

Excel 및 R : 행렬 연산

1. 행렬의 곱셈

-

행렬의 곱셈에 사용되는 엑셀 함수는 MMULT

· A3부터 D6까지 A행렬을 입력하고, F3부터 H6까지 B행렬을 입력

- · 행렬 곱셈을 하기 위해 행렬 곱셈의 결과가 구해질 영역(예를 들어, C9부터 E12)을 마우스로 끌어서 연속되게 선택
- ·식 =MMULT(A3:D6,F3:H6)을 입력한 후 Ctrl+Shift+Enter를 동시에 누름

	A	в	С	D	E	F	G	н
1								
2	행렬A					행렬B		
3	3	1	7	5		5	9	7
4	6	2	9	9		3	6	8
5	7	3	4	6		8	5	4
6	1	5	8	4		6	2	7
7								
8			A*B					
9			104	78	92			
10			162	129	157			
11			112	113	131			
12			108	87	107			

2. 전치행렬

- 행과 열이 바뀐 전치행렬을 구하는 엑셀 함수는 TRANSPOSE
- · 행렬 B의 전치행렬을 구하기 위해서는 전치행렬이 구해질 영역(예를 들어, G9부터 J11)을 마우스로 끌어서 연속되게 선택
- · 식 =TRANSPOSE(F3:H6)를 입력한 후 Ctrl+Shift+Enter를 동시에 누름

3. 행렬식

- · 행렬식(determinant)을 구하는데 사용되는 엑셀 함수는 MDETERM
 · 행렬 A의 행렬식을 구하고자 할 경우 아무 셀(예를 들어 A9)에 셀 포인터를 위치
 - · 식 =MDETERM(A3:D6)을 입력하고 Enter를 누름

1	А	в	С	D
1				
2	행렬A			
3	3	1	7	5
4	6	2	9	9
5	7	3	4	6
6	1	5	8	4
7				
8				
9	236			

-

4. 역행렬

- 역행렬의 계산에 사용되는 엑셀 함수는 MINVERSE
- · 행렬 A의 역행렬을 구하기 위해서는 역행렬이 구해질 영역(예를 들어, A9부터 D12)을 마우스로 끌어 연속되게 선택
- ·식 =MINVERSE(A3:D6)을 입력한 후 Ctrl+Shift+Enter를 동시에 누름
- · 역행렬을 제대로 구했는지 확인은 행렬 A와 그 행렬의 역행렬의 곱을 구하면 항등행렬이 구해짐

	A	В	С	D	E	F	G	н	1
1									
2	행렬A								
3	3	1	7	5					
4	6	2	9	9					
5	7	3	4	6					
6	1	5	8	4					
7									
8	행령A의 역	행렬				항등행렬			
9	0.567797	-0.48305	0.330508	-0.11864		1	-4.44089E-16	0	-2.77556E-17
10	-0.33051	0.042373	0.076271	0.20339		8.88178E-16	1	-4.44089E-16	-5.55112E-17
11	0.576271	-0.35593	0.059322	-0.00847		0	0	1	0
12	-0.88136	0.779661	-0.29661	0.042373		0	0	0	1
13									

5. 연립방정식 풀이

- 왼쪽의 연립방정식은 오른쪽의 행렬로 나타낼 수 있음
- 연립방정식의 해는 $X = A^{-1}H$ 와 같이 구할 수 있음

$$\begin{array}{c} a_{11}X_1 + a_{12}X_2 + a_{13}X_3 = h_1 \\ a_{21}X_1 + a_{22}X_2 + a_{23}X_3 = h_2 \\ a_{31}X_1 + a_{32}X_3 + a_{33}X_3 = h_3 \end{array} \qquad \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix} \begin{bmatrix} X_1 \\ X_2 \\ X_3 \end{bmatrix} = \begin{bmatrix} h_1 \\ h_2 \\ h_3 \end{bmatrix}$$

- 예 : 다음의 연립방정식 해 구하기
 - · A 행렬과 H 행렬을 입력
 - · 역행렬의 결과가 구해질 영역(예를 들어, A7부터 C9)을 마우스로 끌어서 연속되게 선택
 - · 식 =MINVERSE(A2:C4)을 입력한 후 Ctrl+Shift+Enter를 동시에 누름

1	A	В	С	D	E	F
1	Х	Y	Z		상수	
2	2	3	0		24	
3	3	0	-2		5	
4	1	2	1		17	
5						
6	역행렬				해	
7	-0.57143	0.428571	0.857143		X=	3
8	0.714286	-0.28571	-0.57143		Y=	6
9	-0.85714	0.142857	1.285714		Z=	2
10						

🦓 제주대학교 표. R 행렬 연산

b3-ch3-1.R	<pre>> a<-matrix(c(3,1,7,5,6,2,9,9,7,3,4,6,1,5,8,4),nrow=4,ncol=4,byrow=T) > a</pre>
a<-matrix(c(3,1,7,5,6,2,9,9,7,3,4,6,1,5,8,4),nrow=4	[,1] [,2] [,3] [,4]
,ncol=4,byrow=T)	$\begin{bmatrix} 1, \\ 2, \end{bmatrix} \begin{bmatrix} 2 \\ 6 \end{bmatrix} \begin{bmatrix} 2 \\ 9 \end{bmatrix} \begin{bmatrix} 9 \\ 9 \end{bmatrix}$
a	$\begin{bmatrix} 3, \\ 7 & 3 & 4 & 6 \\ \hline 4, \\ 1 & 5 & 8 & 4 \end{bmatrix}$
b<-matrix(c(5,9,7,3,6,8,8,5,4,6,2,7),nrow=4,ncol=3	<pre>> b<-matrix(c(5,9,7,3,6,8,8,5,4,6,2,7),nrow=4,ncol=3,byrow=T)</pre>
,byrow=T)	[,1] [,2] [,3]
b	$\begin{bmatrix} 1, \\ 5 & 9 & 7 \\ \hline 2, \\ 1 & 3 & 6 & 8 \end{bmatrix}$
amb<-a%*%b	
amb	[4,] 6 2 /
tbma<-t(b)%*%a	> $amb < -a\% $ > $tbma < -t(b)\%$
tbma	[,1] [,2] [,3] > tbma [,1] [,2] [,3] [,4]
ainv<-solve(a)	$\begin{bmatrix} 1, \\ 104 \end{bmatrix} \begin{bmatrix} 78 \\ 92 \end{bmatrix} \begin{bmatrix} 1, \\ 95 \end{bmatrix} \begin{bmatrix} 65 \\ 142 \end{bmatrix} \begin{bmatrix} 124 \\ 124 \end{bmatrix}$
ainv	$\begin{bmatrix} 3 \\ 3 \\ 1 \end{bmatrix} \begin{array}{c} 112 \\ 113 \\ 108 \\ 87 \\ 107 \\ 107 \\ 107 \\ 104 \\ 70 \\ 193 \\ 159 \\ 150 \\$
iden<-a%*%ainv	[4,] 108 87 107
iden	> ainv<-solve(a) > ainv
	[,1] [,2] [,3] [,4] [1,] 0.5677966 -0.48305085 0.33050847 -0.118644068 [2,] -0.3305085 0.04237288 0.07627119 0.203389831 [3,] 0.5762712 -0.35593220 0.05932203 -0.008474576 [4,] -0.8813559 0.77966102 -0.29661017 0.042372881
	<pre>> iden<-a%*%ainv > iden [,1] [,2] [,3] [,4] [1,] 1.000000e+00 -4.440892e-16 0.000000e+00 -2.775558e-17 [2,] 8.881784e-16 1.000000e+00 -4.440892e-16 -5.551115e-17 [3,] 0.000000e+00 0.000000e+00 1.000000e+00 0.000000e+00 [4,] 0.000000e+00 0.000000e+00 0.000000e+00</pre>

b3-ch3-1.R
앞에서 계속
A<-matrix(c(2,3,0,3,0,-2,1,2,1),nrow=3,ncol=3,byr
ow=T)
A
H<-matrix(c(24,5,17),nrow=3,ncol=1)
Н
Ainv<-solve(A)
Ainv
X=Ainv%*%H
Х

> A<-matrix(c(2,3,0,3,0,-2,1,2,1),nrow=3,ncol=3,byrow=T)</pre> > A [,1] [,2] [,3] 2 3 [1,]0 [2,] 3 0 -2 1 2 1 [3,] > H<-matrix(c(24,5,17),nrow=3,ncol=1)</pre> > H [,1][1,]24 [2,] 5 [3,] 17 > Ainv<-solve(A)</pre> > Ainv [,1][,2] [,3] [1,] -0.5714286 0.4285714 0.8571429 [2,] 0.7142857 -0.2857143 -0.5714286 [3,] -0.8571429 0.1428571 1.2857143 > X=Ainv%*%H > X

[,1] 3

> 6 2

[1,] [2,]

[3,]

Excel 및 R : 재무함수

세조대학교 I. Excel 재무함수

- 1. 미래가치(또는 만기금액) 및 적립기간
- Future Value(FV)는 일정 금액을 정기적으로 불입하고 일정한 이율을 적용하는 투자의 미래 가치를 계산
- FV 재무함수를 이용하면 기간별 투자액(적립금)의 미래가치(만기액)를 계산해 주며 또한 만기액에 대한 불입 횟수를 계산
- FV의 구문(syntax)은 일정한 금액(pmt)을 일정한 이율(rate)로 일정 기간(nper)동안 적립하는 경우 얻는 미래가치를 계산
- =FV(rate,nper,pmt,pv,type)
 - rate : 기간당 이율
 - · nper : 납입 횟수
 - · pmt : 정기적으로 적립하는 금액(내는 돈은 -로, 받는 돈은 +로 표시)
 - · pv : 현재가치 또는 앞으로 지불할 일련의 납입금의 현재가치 총액
 - · type : 0(기말) 또는 1(기초)로 납입 시점

- 예 1 : 매년 초에 20000원씩 연리 12%에 20년 동안 불입할 경우 만기 수령액은?
 - ·어느 셀에서든 식 =FV(12%,20,-20000,0,1)를 입력
 - · 또는 수식-재무함수-FV를 선택하면 나타나는 함수 인수 대화상자에 동일한 내용을 입력하고 확인 클릭

- 예 2 : 연12%의 이율에 매월 초 100000원을 적립하여 5000000원을 만기에 받고자 할 경우 몇 개월을 적립해야 하나?
- ·어느 셀에서든 식 =FV(12%/12,nper,-100000,0,1)을 입력하여 값 5000000원을 보아 가면서 nper의 숫자를 조정
- ·또는 수식-재무함수-FV를 선택하면 나타나는 함수 인수 대화상자에 동일한 내용을 입력하고 확인 클릭

2. 현재가치 및 대출금 분할상환액

- Present Value(PV)는 앞으로 지불할 일련의 납입금의 현재가치의 총합을 계산
- PV 재무함수를 이용하면 투자액의 현재가치를 계산해 주며 또는 대출금에 대한 분할상환액을 계산
- PV의 구문(syntax)은 일정한 금액(pmt)을 일정한 이율(rate)로 일정 기간(nper)동안 상환하는 경우의 현재가치를 계산
- = PV(rate,nper,pmt,fv,type)
 - · rate : 기간당 이율
 - · nper : 납입 횟수
 - · pmt : 정기적으로 적립하는 금액(내는 돈은 -로, 받는 돈은 +로 표시)
 - ·fv :미래가치
 - · type : 0(기말) 또는 1(기초)로 납입 시점

- 예 3 : 냉장고를 살려고 하는데 두 가지 방법으로 살 수 있다고 하자. 먼저 현금을 주면 1200000원에 살 수 있고 다음으로 할부로 할 경우 매월 35000원씩 5년에 걸쳐 내야 한다. 이 기간 동안의 이율은 연 7% 라 하자. 당신은 어느 방법으로 냉장고를 사겠는가?
 - ·어느 셀에서든 식 =PV(7%/12,60,-35000,0,1)을 입력
 - ·또는 수식-재무함수-PV를 선택하면 나타나는 함수 인수 대화상자에 동일한 내용을 입력하고 확인 클릭
 - · 따라서 현금 1200000원을 주고 구입하는 방법을 선택

함수 인수			? ×
PV			
Rate	7%/12	=	0.005833333
Nper	60	=	60
Pmt	-35000	=	-35000
Fv	0	=	0
Туре	1	=	1
투자의 현재 가치를 구합니다	다. 일련의 미래 투자가 상응하는	= 현재 가기	1777880.596 치의 총합계입니다.
	Type 은(는) 투자 주기 초에 시에는 0으로 설정하	지급 시 거나 생릭	에는 1로 설정하고 투자 주기 말에 지급 ^ද 하는 논리값입니다.
수식 결과= ₩1,777,881			
<u>도움말(H)</u>			확인 취소

- 예 4 : 자동차를 사기 위해 3600000원을 연 18%로 36개월 동안 대출 받았을 경우 월 얼마를 불입하여야 하나?
- ·어느 셀에서든 식 =PV(18%/12,36,pmt,0,0)의 값 3600000원을 보아 가면서 pmt의 금액을 조정 ·또는 수식-재무함수-PV를 선택하면 나타나는 함수 인수 대화상자에 동일한 내용을 입력하고 확인 클릭

함수 인수				? ×
PV				
Rate	18%/12	1	=	0.015
Nper	36	1	=	36
Pmt	-130149	1	=	-130149
Fv	0	1	=	0
Туре	0		=	0
투자의 현재 가치를 구합니다	H. 일련의 미래 투자가 상응하는 Pmt 은(는) 각 기간에 대함 없습니다.	: 현재 한 지급	= 가치 액으	3600010.402 지의 총합계입니다. 으로서 투자 기간 중에 변경될 수
수식 결과= 3600010.402				
<u>도움말(H)</u>				확인 취소

- PMT 구문(syntax)은 일정 이율(rate)로 대출(pv)을 받아 일정 기간(nper)동안 상환할 때 월 상환액을 계산
- =PMT(rate,nper,pv,fv,type)
 - · rate : 기간당 이율
 - · nper : 납입 횟수
 - ·pv :대출금
 - ·fv :미래가치
 - · type : 0(기말) 또는 1(기초)로 납입 시점
 - · 예 4를 풀기 위해 어느 셀에서든 식 =PMT(18%/12,36,3600000,0,0)을 입력
 - ·또는 수식-재무함수-PMT를 선택하면 나타나는 함수 인수 대화상자에 동일한 내용을 입력하고 확인 클릭

연습 2 : 다음 그림에 있는 노란색 부분을 완성해 보라

·기간별 만기금액을 계산하기 위해 C7에 =FV(\$C\$4/12,B7,\$C\$3,0,1)를 입력하고 나머지 셀은 이 셀을 복사 ·기간별 월상환액을 계산하기 위해 F7에 =PMT(\$F\$4/12,E7,\$F\$3,0,0)를 입력하고 나머지 셀은 이 셀을 복사

	A	В	С	D	E	F	G
1							
2							
3		매월 저죽액	-350000		대출원금	1000000	
4		이자율(년)	3.50%		이자율(년)	10%	
5							
6		기간(개월)	만기금액		상환기간(개월)	월상환액(이자포함)	
7		12	₩4,280,483		6	-₩1,715,614	
8		18	₩6,477,482		12	-₩879,159	
9		24	₩8,713,209		18	-₩600,571	
10		35	₩12,914,905		24	-₩461,449	
11		60	₩22,979,969		36	-₩322,672	
12							

한편, 대출이자 계산기 또는 예금/적금 계산기(http://www.best79.com)를 이용하여 계산한 다음의 그림을 보면 위와 동일 대출에자 계산기 비대출 정보 공유 비 예금/적금 계산기 비언용 계산2

월 납입액	350,000 원	1	목표기갼	60 개월			
이자율	연 3.5 % (연 3.5 % (월복리)					
세전이자	1,979,969	1,979,969 원					
구는	Ē	만기지급액		세후이자			
일반 (1	5.4%)	22.675.054 원		1,675,054 월			
세금우대	(9.5%)	22,791,872 원		1,791,872			
세금우대 (1.4%)		22,952,250 원		1,952,250			
비과세 (0%)		22,979,969 원		1,979,969 5			

대출이자 계산기 | 대출 정보 공유 | 예금/적금 계산기 | 연봉 계산기

대출동	3	10,000,0	000 원			
대출금리 연 10		연 10 %	6			
107	121	12 개월	(1.91)			
3 1 1 1 7	121	018	1. 1. 7			
CH BER	FIER	81 31 - 2	그르사화			
5 C C		3483	2202			
황이스	1	549,880) 원			
다시 2	제산하기				여요 1717] 공유리기 🚺	🕈 Turret 🛛 💬
y 22.2	월 상환금 -					
No	상환금		낭입원금	이자	남입원금계	자금
1	87	9.158	795.828	83.330	795.828	9,204,172
1	87	9.158 9.158	795.828 802.458	83.330 76,700	795.828 1,598.286	9.204.172 8,401,714
1 2 3	87 87 87	9.158 9.158 9.158	795.828 802.458 809.148	83.330 76.700 70.010	795.828 1,598.286 2,407,434	9,204,172 8,401,714 7,592,566
1 2 3 4	87 87 87 87	3,158 3,158 3,158 3,158	795.828 802.458 809.148 815.888	83,330 76,700 70,010 63,270	795.828 1,598.286 2,407,434 3,223,322	9,204,172 8,401,714 7,592,566 6,776,678
1 2 3 4 5	87 87 87 87 87	3,158 3,158 3,158 3,158 3,158 3,158	795.828 802.458 809.143 815.888 822.688	83.330 76.700 70.010 63.270 56.470	795.808 1.598.296 2.407.434 3.223.322 4.046.010	9,204,172 8,401,714 7,592,566 6,776,678 5,953,990
1 2 3 4 5 6	87 87 87 87 87 87 87 87	3.158 3.158 3.158 3.158 3.158 3.158 3.158	795.828 802.458 809.143 815.888 822.688 829.548	83.330 76,700 70,010 63,270 56,470 49,610	795,809 1,598,296 2,407,434 3,223,322 4,046,010 4,875,558	9,204,172 8,401,714 7,592,566 6,776,678 5,953,990 5,124,442
1 2 3 4 5 6 7	87 87 87 87 87 87 87 87 87	3.158 3.158 3.158 3.158 3.158 3.158 3.158 3.158	795.828 802.458 809.148 815.888 822.688 822.688 829.548 836.458	83.330 76.700 70.010 63.270 56,470 49,610 42,700	795.828 1.598.286 2.407.434 3.223.322 4.046.010 4.875.558 5.712.016	9,204,172 8,401,714 7,592,566 6,776,678 5,953,990 5,124,442 4,287,984
1 2 3 4 5 6 7 8	87 87 87 87 87 87 87 87 87	3.158 3.158 3.158 3.158 3.158 3.158 3.158 3.158 3.158	795.828 802.458 809.148 815.888 822.688 822.688 829.548 836.458 843.429	83.330 76.700 70.010 63.270 96.470 49.610 42.700 36.730	795.828 1.598.286 2.407.434 3.223.322 4.046.010 4.875.558 5.712.016 6.555.444	9,204,172 8,401,714 7,592,566 6,776,678 5,953,990 5,124,442 4,287,984 3,444,596
1 2 3 4 5 6 7 8 9	87 87 87 87 87 87 87 87 87 87 87	3.158 3.158 3.158 3.158 3.158 3.158 3.158 3.158 3.158 3.158 3.158 3.158 3.158 3.158	795.828 802.458 809.148 815.888 822.688 822.688 829.548 836.458 843.428 850.458	83.330 76,700 70,010 63,270 56,470 49,610 42,700 35,730 28,700	796.808 1.598.296 2.407,434 3.223.302 4.046.010 4.875.598 5.712.016 6.595.444 7.405.902	9,204,172 8,401,714 7,592,566 6,776,676 5,953,990 5,124,442 4,287,964 3,444,556 2,594,098
1 2 3 4 5 6 7 8 9 10	87 87 87 87 87 87 87 87 87 87 87 87 87	A.158 A.158	795.828 802.458 803.148 815.888 822.688 823.688 823.548 836.458 843.429 850.458 857.548	83.330 75.700 70.010 63.270 96.470 49.610 42.700 35.730 28.700 21.610	796.808 1.598.296 2.407,434 3.223.322 4.046.010 4.875.598 5.712.016 6.555.444 7.405.902 8.263.450	9,204,172 8,401,714 7,592,566 6,776,676 5,953,990 5,124,442 4,287,984 3,444,556 2,594,096 1,736,550
1 2 3 4 5 6 7 8 9 10 11	87 87 87 87 87 87 87 87 87 87 87 87 87 8	1.158 3.158 3.158 3.158 3.158 3.158 3.158 3.158 3.158 3.158 3.158 3.158 3.158 3.158 3.158 3.158 3.158 3.158	795.808 802.458 803.143 815.888 822.688 823.548 836.458 843.428 950.458 857.548 864.688	83.330 76,700 70,010 63,270 96,470 49,610 42,700 36,730 28,700 21,610 14,470	795.808 1.598.296 2.407.434 3.223.322 4.046.010 4.875.558 5.712.016 6.595.444 7.405.902 8.263.450 9.128.138	9,204,172 8,401,714 7,592,566 6,776,678 5,953,993 5,124,442 4,287,964 3,444,568 2,594,069 1,756,593 871,862

제주대학교 II. R 재무함수

}

}

}

```
b3-ch3-2.R
fv <- function(rate, nper, pmt, pv = 0.0, type = 0) {
pvif <- (1+rate)^nper # Present value interest factor
fvifa <- if(rate==0) nper else ((1+rate)^nper - 1) / rate
return(-((pv * pvif) + pmt * (1.0 + rate * type) * fvifa))
                                                                            > fv(rate=0.12, nper=20, pmt=-20000, type=1)
                                                                            [1] 1613975
fv(rate=0.12, nper=20, pmt=-20000, type=1)
fv(rate=0.01, nper=41, pmt=-100000, type=1)
                                                                            > fv(rate=0.01, nper=41, pmt=-100000, type=1)
                                                                            [1] 5087899
pv <- function(rate, nper, pmt, fv = 0.0, type = 0) {
 pvif <- (1+rate)^nper # Present value interest factor
 fvifa <- if(rate==0) nper else ((1+rate)^nper - 1) / rate
 return((-fv - pmt * (1.0 + rate * type) * fvifa) / pvif)
                                                                            > pv(rate=0.07/12, nper=60, pmt=-35000, type=1)
                                                                            [1] 1777881
pv(rate=0.07/12, nper=60, pmt=-35000, type=1)
                                                                            > pv(rate=0.18/12, nper=36, pmt=-130149)
pv(rate=0.18/12, nper=36, pmt=-130149)
                                                                            [1] 3600010
pmt <- function(rate, nper, pv, fv=0, type=0) {
rr < -1/(1+rate)^{nper}
 res <- (-pv-fv*rr)*rate/(1-rr)
                                                                       > pmt(rate=0.18/12, nper=36, pv=3600000,fv=0, type=0)
 return(res/(1+rate*type))
                                                                       [1] -130148.6
pmt(rate=0.1/812, nper=36, pv=3600000, fv=0, type=0)
                                                                > fv(rate=0.035/12, nper=c(12,18,24,35,60), pmt=-350000, type=1)
                                                                 [1] 4280483 6477482 8713209 12914905 22979969
fv(rate=0.035/12, nper=c(12,18,24,35,60), pmt=-350000, type=1)
                                                                 > pmt(rate=0.1/12, nper=c(6,12,18,24,36), pv=10000000)
```

[1]

-1715613.9 -879158.9 -600570.8

-461449.3

```
pmt(rate=0.1/12, nper=c(6,12,18,24,36), pv=10000000)
```

_

FinCal 패키지를 이용한 계산 · 동 패키지 사용설명서(FinCal.pdf)를 참고하면 됨

-			
	·	-	

Estimate future value (fv)

Description

Estimate future value (fv)

Usage

fv(r, n, pv = 0, pmt = 0, type = 0)

Arguments

r	discount rate, or the interest rate at which the amount will be compounded each period
n	number of periods
pv	present value
pmt	payment per period
type	payments occur at the end of each period (type=0); payments occur at the be- ginning of each period (type=1)

pv	Estimate present value (pv)	pmt	Estimate period payment
Description	volue (nu)	Description Estimate perio	d payment
Esumate present	value (pv)	Usage	
Usage		pmt(r, n, pv	v, fv, type = 0)
pv(r, n, fv =	0, pmt = 0, type = 0)		

1. 수학함수

- 함수란 미리 정의되어 있는 수식을 말하며, 함수는 정해진 계산식이 있음
- 함수는 복잡한 수식을 간단히 처리할 수 있도록 미리 정의된 순서나 구조에 따라 식을 작성하는 방식임
- Excel에서 다양한 수학함수를 제공하고 있는데 그 중 많이 활용되는 수학함수는 다음과 같음

(1) sum함수

- sum함수는 모든 인수들의 합계를 구해 줌
- =sum(number1, number2,) · number : 상수, 셀 범위, 셀 이름 등
- 예:-3,-2,-1,1,2,3의 합계 구하기

 $\cdot = sum(a1:a6) \rightarrow 0$

PM	IT 🔹	: 🗙	$\checkmark f_x$	=sum(a1:a6
	А	В	С	D
1	-3			
2	-2			
3	-1			
4	1			
5	2			
6	3			
7	=sum(a1:a	6)		

(2) sumsq함수

- sumsq함수는 모든 인수들의 제곱의 합계를 구해 줌
- =sumsq(number1, number2,)
 - · number : 상수, 셀 범위, 셀 이름 등
- 예:-3,-2,-1,1,2,3의 제곱의 합계 구하기

 $\cdot = sumsq(a1:a6) \rightarrow 28$

PM	IT 👻	: 🗙	$\checkmark f_x$	=SUMSC)(A1:A6)
	Α	В	С	D	E
1	-3				
2	-2				
3	-1				
4	1				
5	2				
6	3				
7	=SUMSQ(A1:A6 <mark>)</mark>			

22

(3) abs함수

- · abs함수는 인수로 지정한 숫자의 절댓값을 구함 · =abs(인수)
- 예 : -3,-2,-1,1,2,3의 각 인수의 절댓값 구하기
 - $\cdot = abs(a1)$
 - ·나머지 인수들에 대해서는 B1을 복사해서 붙여넣기 ·나머지 인수들에 대해서는 B1을 복사해서 붙여넣기

PMT		: 🗙	$\checkmark f_x$	=abs(a1)
	А	В	с	D
1	-3	=abs(a1)		
2	-2			
3	-1			
4	1			
5	2			
6	3			

PM	IT	*	: 🗙	$\checkmark f_x$	=sqrt(a1)
	А		В	с	D
1		-3	=sqrt(a1)		
2		-2			
3		-1			
4		1			
5		2			
6		3			

sqrt함수는 인수로 지정한 숫자의 양의 제곱근을 구함

- 예 : -3,-2,-1,1,2,3의 각 인수의 제곱근 구하기

(4) sqrt함수

=sqrt(인수)

 $\cdot = sqrt(a1)$

-

-

B1	Ŧ	: 🗙 💊
	А	В
1	-3	#NUM!
2	-2	#NUM!
3	-1	#NUM!
4	1	1
5	2	1.414214
6	3	1.732051

(5) exp함수

- exp함수는 자연로그의 밑수인 e(e = 2.718...)를 인수만큼 거듭제곱한 값을 계산
- =abs(인수) -예 : -3,-2,-1,1,2,3의 각 인수를 지수로 한 e의 거듭제곱 구하기
 - $\cdot = \exp(a1)$
 - · 나머지 인수들에 대해서는 B1을 복사해서 붙여넣기

PM	T T	÷ 🗙	$\checkmark f_x$	=exp(a1)
	А	В	с	D
1	-3	=exp(a1)		
2	-2			
3	-1			
4	1			
5	2			
6	3			

	А	В
1	-3	0.049787
2	-2	0.135335
3	-1	0.367879
4	1	2.718282
5	2	7.389056
6	3	20.08554

(6) **In**함수

-

=ln(인수)

 $\cdot = \ln(a1)$ · 나머지 인수들에 대해서는 B1을 복사해서 붙여넣기

- In함수는 인수로 지정한 숫자의 자연로그값을 구함

- 예 : -3,-2,-1,1,2,3의 각 인수의 자연로그값 구하기

	А	В
1	🚸 -3	#NUM!
2	-2	#NUM!
3	-1	#NUM!
4	1	0
5	2	0.693147
6	3	1.098612

2. 통계함수

- Excel에서 다양한 통계함수를 제공하고 있는데 그 중 많이 활용되는 통계함수는 다음과 같음 (1) (산술)평균 계산

- average는 산술평균을 계산하는데 구문은 다음과 같음
- =average(number1, number2, ...) • number1, number2, ... : 평균을 구할 수치 인수
- averagea는 인수 목록에서 산술평균을 계산하는데 구문은 다음과 같음
- · =averagea(value1, value2, ...) · value1, value2, ... : 평균을 구할 수치, 셀 또는 셀 범위 인수로 텍스트가 들어 있는 배열은 0으로 인식
- 예 : 그림과 같은 자료가 있을 경우 (산술)평균은 각각 다음과 같이 계산
 - \cdot average(a1:a5) = 7
 - \cdot averagea(a1:a5) = 5.6

(2) 분산 계산

- var은 표본의 분산을 계산하는데 구문은 다음과 같음
- =var(number1, number2, ...) · number1, number2, ... : 표본분산을 구할 수치 인수
- varp는 모집단의 분산을 계산하는데 구문은 다음과 같음
- =varp(number1, number2, ...) · number1, number2, ... : 모분산을 구할 수치 인수
- 예 : 그림과 같은 자료가 있을 경우 표본분산 및 모분산은 각각 다음과 같이 계산 · var(a1:a5) = 12.6667
 - varp(a1:a5) = 9.5

	Α	В	С
1	10		12.66667
2	7		9.5
3	9		
4	2		
5	na		

- (3) 표준편차 계산
- stdev는 표본의 표준편차를 계산하는데 구문은 다음과 같음
- =stdev(number1, number2, ...) · number1, number2, ... : 표준편차를 구할 수치 인수
- stdevp는 모집단의 표준편차를 계산하는데 구문은 다음과 같음
- stdevp(number1, number2, ...)
 · number1, number2, ... : 모집단의 표준편차를 구할 수치 인수
- 예 : 그림과 같은 자료가 있을 경우 표준편차 및 모집단의 표준편차는 각각 다음과 같이 계산
 stdev(a1:a5) = 3.559035
 - stdevp(a1:a5) = 3.082207

	А			А	В	С
1	10		1	10		3.559026
2	7	\rightarrow	2	7		3.082207
3	9		3	9		
4	2		4	2		
5	na		5	na		

제주대학교 표. R 수학 및 통계함수

1. 수학함수

- R에서는 다양하고 광범위한 내장함수를 제공하고 있음
- 분석 과정에서 빈번하게 사용되는 수식을 단순화한 함수를 사용함으로써 작업의 효율성을 높일 수 있음
- R에서 주로 사용되는 수학함수와 그 기능은 다음과 같음

함수	기능	함수	기능
sum()	모든 원소의 합	range()	범위 함수
abs()	절댓값 함수	exp()	지수 함수
sqrt()	제곱근 함수	log()	자연로그 함수
max()	최댓값 함수	log10()	상용로그 함수
min()	최솟값 함수	round()	소수점 이하 반올림

2. 통계함수

- R에서 주로 사용되는 통계함수와 그 기능은 다음과 같음

함수	기능	함수	기능
mean()	산술평균	cor()	상관계수
sort()	오름(내림)차순 정리	cov()	공분산
median()	중앙값	summary()	요약 통계량
quantile()	분위수	cumsum()	누적 합
diff()	원소 사이의 차이	lag()	시차 변수 만들기
var()	분산	sd()	표준편차

а

as

log(a)

 $> \log 10(as)$ [1] 0.0000000 0.3010300 0.4771213

b3-ch3-4.R
x<-c(21,4,13,6,12,7,4,25,22)
y<-c(-2,4,-3,8,-7,8,-2,-6,5)
х;у
cov(x,y)
cor(x,y)
summary(x);summary(y)
cumsum(1:10);cumprod(1:10)

```
> x
[1] 21 4 13 6 12 7 4 25 22
> y
[1] -2 4 -3 8 -7 8 -2 -6 5
> cov(x,y)
[1] -19.54167
```

> X [1]	21	4	13	6	12	7	4	25	22
> y									
[1] > 0	-2 0r(x	4	-3	8	-7	8	-2	-6	5
[1]	-0.	412	, 2308	1					

>	summar	ry(x)				
	Min.	1st Qu.	Median	Mean	3rd Qu.	Max.
	4.00	6.00	12.00	12.67	21.00	25.00
>	summar	ry(y)				
	Min.	1st Qu.	Median	Mean	3rd Qu.	Max.
-7	.0000	-3.0000	-2.0000	0.5556	5.0000	8.0000

> cumsur	m(1:10)								
[1] 1	3 6 10) 15 21 2	8 36 45	55					
> cumpro	od(1:10)								
[1]	1	2	6	24	120	720	5040	40320	362880 3628800

🔏 🚛 🗛 I. Excel 확률분포 시뮬레이션

0. 이론적 확률분포의 관계

- 확률분포는 이산형 확률분포와 연속형 확률분포로 구분
- 이론적 확률분포의 출발점은 정규분포를 표준화한 표준정규분포임
- 확률변수 $Z_1, Z_2, ..., Z_n$ 이 서로 독립적으로 표준정규분포 $Z_i \sim N(0,1)(i=1,2,...,n)$ 를 따를 때, $Z_1, Z_2, ..., Z_n$ 의 제곱합 X= $\sum_{i=1}^n Z_i^2$ 은 자유도가 n인 χ^2 –분포를 따름. 즉, X~ χ_n^2
- Z~N(0,1), V~ $\chi^2(v)$ 이고 Z와 V가 독립이면, T= $\frac{Z}{\sqrt{\nu}}$ ~t(v)
- $X_1 \sim \chi_{\nu_1}^2, X_2 \sim \chi_{\nu_2}^2$ 이고 X_1, X_2 가 서로 독립이면, $F = \frac{\chi_1}{\nu_2} \sim F(v_1, v_2)$

1. 표준정규분포 및 시뮬레이션

- 평균이 0이고, 표준편차가 1인 표준정규분포는 모든 확률분포의 출발점
- A1셀에서 함수삽입 아이콘을 클릭하면 나타나는 함수마법사에서 표준정규분포에 따르는 데이터를 생 성해 주는 RANDN을 선택
- RANDN의 함수 인수 대화상자에서 그림과 같이 입력하면 표준정규분포에 따르는 임의 수 1개가 생성
- A10000까지 복사하면 표준정규분포에 따르는 Z₁의 임의 수 10000개가 생성되고, Z₁~N(0,1)
- 데이터-분석-데이터 분석을 실행하면 나타나는 통계 데이터분석 대화상자에서 히스토그램을 선택하고, 히스토그램대화상자에서 입력범위에 \$A\$1:\$A\$10000을 입력하고 차트출력에 체크한 후 확인 클릭

함수 마법사 ? ×	
합수 겸색(<u>S</u>):	
수행하려는 작업에 대한 간단한 설명을 입력한 다음 [겸 검색(G) 석]을 클릭하십시오,	
범주 선택(<u>C</u>): 사용자 정의	
함수 선택(<u>N</u>):	
Mso9GetUILcid MsoGetUILcid PACF HANDN BANDT	표준정규분포
RANDX2 Y	0.04
도움말을 사용할 수 없습니다.	0.04 -
	0.03 -
	0.03 -
도움말 확인 취소	
함수 인수 ? ×	0.02 -
RANDN	0.01 -
Mu 0 📷 = 0	
Sigma 1 📷 = 1	
= -0,04002058	0.00
도움말을 사용할 수 없습니다.	
Sigma	
수식 결과= 0,677076882	
<u>도움말(H)</u> 확인 취소	

2. x²-분포 및 시뮬레이션

- 앞에서 Z₁을 생성했던 것과 동일한 방법으로 B1셀부터 E1셀까지 각각 Z₂, Z₃, Z₄, Z₅를 생성한 후 각 셀을 10000번째 행까지 복사
- G1셀부터 K1셀까지 이미 생성된 Z₁, Z₂, Z₃, Z₄, Z₅를 각각 제곱한 Z₁², Z₂², Z₃², Z₅²을 만들고 각 셀을 10000번째 행까지 복사
- M1셀에 Z²₁, Z²₂, Z²₃, Z²₄, Z²₅을 모두 합하고 10000번째 행까지 복사하면 이 값은 자유도가 5인 χ²-분포 를 따르게 됨
- 즉, X= $\sum_{i=1}^{n} Z_{i}^{2} \sim \chi_{5}^{2}$
- 데이터-분석-데이터 분석을 실행하면 나타나는 통계 데이터분석 대화상자에서 히스토그램을 선택하고, 히스토그램대화상자에서 입력범위에 \$M\$1:\$M\$10000을 입력하고 차트출력에 체크한 후 확인 클릭

J 제주때함础 Ⅱ. R 확률분포 시뮬레이션

1. 표준정규분포 및 시뮬레이션

- set.seed : 난수 생성기의 상태를 통제하는 것으로 동일한 숫자(seed)는 동일한 난수를 생성
- z<-rnorm(n,0,1) : 표준정규분포에서 임의로 10000개의 데이터를 생성
- par(mfrow=c(1,2)) : 그래픽 매개변수를 설정하는데 mfrow=c(1,2)는 그림을 하나의 행, 2개의 열로 배열
- par(new=T) : new=T는 히스토그램 위에 다른 그래프를 그림
- plot(density(z),) : plot은 R 객체를 그리는 함수이고, density(z)는 데이터 z의 밀도
- curve(dnorm(x,0,1),) : curve는 함수에 해당하는 곡선을 그리는데 dnorm(x,0,1)는 표준정규분포의 확률밀도함수

2. χ²-분포 및 시뮬레이션

- plot(density(chi5),) : plot은 R 객체를 그리는 함수이고, density(chi5)는 데이터 chi5의 밀도
- curve(dchisq(x,5,ncp=0),) : curve는 함수에 해당하는 곡선을 그리는데 dchisq(x,5, ncp=0)는 자유도 가 5인 χ²-분포의 확률밀도함수

1. t-분포 및 시뮬레이션

- O1셀에 =SQRT(M1/5)를 입력하여 T의 분모를 먼저 구하고 이 셀을 O10000셀까지 복사
- Q1에 새로운 Z를 생성하고 이 셀을 10000번째 행까지 복사
- T를 계산하기 위하여 S1셀에 =Q1/O1을 입력하고 S1셀을 10000번째 행까지 복사하면 T는 자유도가 5인 t-분포를 따름.
- 데이터-분석-데이터 분석을 실행하면 나타나는 통계 데이터분석 대화상자에서 히스토그램을 선택하고, 히스토그램대화상자의 입력범위에 \$S\$1:\$S\$10000을 입력하고 차트출력에 체크한 후 확인 클릭

2. F-분포 및 시뮬레이션

- 앞에서 ∑⁵_{i=1} Z²_i = X₁을 생성했던 것과 동일한 U1부터 Y1셀에 Z₆, Z₇, Z₈, Z₉, Z₁₀을 생성하여 10000번 째 행까지 복사
- AA1부터 AE1셀까지 이미 생성된 Z₆, Z₇, Z₈, Z₉, Z₁₀를 각각 제곱한 Z₆², Z₇², Z₈², Z₁₀²을 만들고 각 셀을 10000번째 행까지 복사
- AG1셀에 $\sum_{i=6}^{10} Z_i^2 = X_2$ 을 만들고 이 셀을 10000번째 행까지 복사하면 자유도가 5인 또 다른 χ^2 -분포가 구해짐
- AI1에 X₁, X₂ 그리고 각각의 자유도인 5를 이용하여 F를 계산, 즉 AI1에 =(M1/5)/(AG1/5)를 입력하여 이 셀을 10000번째 행까지 복사하면, F는 분자의 자유도와 분모의 자유도가 각각 5인 F-분포를 따름
- 데이터-분석-데이터 분석을 실행하면 나타나는 통계 데이터분석 대화상자에서 히스토그램을 선택하고, 히스토그램대화상자의 입력범위에 \$AI\$1:\$AI\$10000을 입력하고 차트출력에 체크한 후 확인을 클릭

1. t-분포 및 시뮬레이션

- plot(density(t5),) : plot은 R 객체를 그리는 함수이고, density(t5)는 데이터 t5의 밀도
- curve(dt(x,5,ncp=0,) : curve는 함수에 해당하는 곡선을 그리는데 dt(x,5,ncp=0)는 자유도가 5인 t-분 포의 확률밀도함수

b3-ch3-9.R
set.seed(12345)
n<-10000;
par(mfrow=c(1,2))
z<-rnorm(n,0,1)
z1<-rnorm(n,0,1)
z2<-rnorm(n,0,1)
z3<-rnorm(n,0,1)
z4<-rnorm(n,0,1)
z5<-rnorm(n,0,1)
chi5<-z1^2+z2^2+z3^2+z4^2+z5^2
sqchi5<-sqrt(chi5/5)
t5<-z/sqchi5
hist(t5_freq=E_xlab=""_xlim= $c(-11, 11)$ breaks=100)
$\operatorname{par}(\operatorname{pew}=T)$
plot(density(15)) aves=E main="" vlim=c(-11, 11) lwd=2, col="blue")
$p_{1} = (11, 11), (10, 10, 10, 10, 10, 10, 10, 10, 10, 10, $
b^{-1}

2. F-분포 및 시뮬레이션

- plot(density(f55),) : plot은 R 객체를 그리는 함수이고, density(f55)는 데이터 f55의 밀도
- curve(df(x,5,5),) : curve는 함수에 해당하는 곡선을 그리는데 df(x,5,5)는 분자의 자유도 및 분모의 자 유도가 각각 5인 F-분포의 확률밀도함수

MATTIME I. Excel 확률분포 통계함수

1. 정규분포

(1) normdist함수

- normdist함수는 누적정규분포의 확률을 계산
- =normdist(x, mean, standard_dev, cumulative)
 - ·x : 분포의 확률값을 구하려는 변량의 값
 - · mean : 확률분포의 산술평균
 - · standard_dev : 확률분포의 표준편차
 - · cumulative : 함수의 형태를 결정하는 논리 값으로 TRUE이면 누적분포함수를, FALSE이면 확률밀도함수를 구함
- (예) normdist(42, 40, 1.5, TRUE) = 0.908789

(2) norminv함수

- norminv함수는 누적정규분포의 역함수의 값을 구함
- = norminv(probability, mean, standard_dev))
 - · probability : 분포에 따른 변량의 확률값
 - · mean : 분포의 산술평균
 - · standard_dev : 분포의 표준편차

(예) norminv(0.908789, 40, 1.5) = 42

f _x	=NORMINV(0.908789,40,1.5)			
С	D	E	F	
		42		

2. χ²-분포

(1) chisq.dist함수

- chisq.dist함수는 χ^2 -분포의 확률을 계산
- = chisq.dist(x, deg_freedom, cumulative)
 - ·x: 분포의 확률값을 구하려는 변량의 값
 - · deg_freedom : 자유도
 - · cumulative : 함수의 형태를 결정하는 논리 값으로 TRUE이면 누적분포함수를,

FALSE이면 확률밀도함수를 구함

(예) chisq.dist(18.307,10, TRUE) = 0.949999

(2) chisq.inv함수

- chisq.inv함수는 χ^2 -분포의 역함수의 값(χ^2 -값)을 구함
- = chisq.inv(probability, deg_freedom)
 - · probability : 분포에 따른 변량의 확률값
 - · deg_freedom : 자유도
- (예) chisq.inv(0.949999, 10) = 18.30697

Chi-Square Distribution (df = 10) 0.10 0.08 0.06 Density 0.04 0.949999 0.02 0.00 18.307 . 20 10 30 0 40 Х

3. t-분포

(1) t.dist함수

- t.dist함수는 t-분포의 확률을 계산
- =t.dist(x, deg_freedom, tails)
 - ·x: 분포의 확률값을 구하려는 변량의 값
 - · deg_freedom : 자유도

· tails : 함수의 형태를 결정하는 논리 값으로 1이면 누적분포함수를, 0이면 확률밀도함수를 구함 (예) t.dist(2.086, 20, 1) = 0.975002

f x	=T.DIST(2.086,20,1)			
С	D	E		
		0.975002		

(2) t.inv함수

- t.inv함수는 t-분포의 역함수의 값(t-값)을 구함
- = =t.inv(probability, deg_freedom)
 - · probability : t-분포의 누적 확률의 값
 - · deg_freedom : 자유도
- (예) t.inv(0.975, 20) = 2.086004

47

4. F-분포

(1) f.dist함수

- f.dist함수는 F-분포의 확률을 계산
- =f.dist(x, degrees_freedom1, degrees_freedom2, cumulative)
 - ·x: 분포의 확률값을 구하려는 변량의 값
 - · degrees_freedom1 : 분자의 자유도
 - · degrees_freedom2 : 분모의 자유도
 - · cumulative : 함수의 형태를 결정하는 논리 값으로 TRUE(또는 1)이면 누적분포함수를, FALSE(또는 0)이면 확률밀도함수를 구한다.

(예)f.dist(6.16,6,4,1) =0.949957

F Distribution (df1 = 6, df2=4)

(2) f.inv함수

f fx

С

- f.inv함수는 F-분포의 역함수의 값(F-값)을 구함
- = f.inv(probability, degrees_freedom1, degrees_freedom2)
 - · probability : F-분포의 누적 확률의 값
 - · degrees_freedom1 : 분자의 자유도
 - · degrees_freedom2 : 분모의 자유도

=F.INV(0.949957,6,4)

Е

6.15998

(예) f.inv(0.949957, 6,4) = 6.15998

D

0.6 0.5 4 Density 0.3 0.2 0.949957 0.1 0.0 V. 6.16 6 0 2 4 8 х

0. 확률분포 관련 통계함수

- R에서 확률분포와 관련된 통계함수는 다음과 같음

분포	R 함수	인수(arguments)
binomial	binom()	size, prob
chi-squared	chisq()	df, ncp
F	f()	df1, df2, ncp
normal	norm()	mean, sd
poison	pois()	lambda
Student's t	t()	df, ncp
uniform	unif()	min, max

우리가 원하는 통계량을 얻기 위해서는 함수의 이름 앞에 다음과 같은 접두사를 붙여야 함

접두사	기능	
d	확률밀도함수(PDF)의 확률값, f(x)	
р	누적분포함수(CDF)의 확률값, F(x)	
q	분위수(quantile) 값, F ⁻¹ (x)	
r	무작위 난수 생성	

1. 정규분포

(1) pnorm함수

- pnorm함수는 누적정규분포의 확률을 계산
- =pnorm(x, mean= , sd=)
 - ·x: 분포의 확률값을 구하려는 변량의 값
 - · mean : 확률분포의 산술평균
 - · sd : 확률분포의 표준편차

[1] 0.9087888

- (2) qnorm함수
- qnorm함수는 누적정규분포의 역함수의 값 계산
- =qnorm(p, mean= , sd=)
 - ·p:확률
 - · mean : 확률분포의 산술평균
 - · sd : 확률분포의 표준편차
- (예) qnorm(0.9087888, mean=40, sd=1.5)

[1] 42

2. χ²-분포

(1) pchisq함수

- pchisq함수는 χ^2 -분포의 확률을 계산
- =pchisq(q, df)
 - ·q:분포의 확률값을 구하려는 변량의 값
 - · df : 자유도

(예) pchisq(18.307, 10)

[1] 0.9499994

- (2) qchisq함수
- qchisq함수는 χ^2 -분포의 역함수의 값(χ^2 -값) 계산
- =qchisq(p, df)
 - · p : 확률
 - · df : 자유도
- (예) qchisq(0.9499994, 10)
- [1] 18.307

3. t-분포

(1) pt함수

- pt함수는 t-분포의 확률을 계산
- =pt(q, df)
 - ·q:분포의 확률값을 구하려는 변량의 값
 - · df : 자유도

(예) pt(2.086, 20)

[1] 0.9750018

- (2) qt함수
- qt함수는 t-분포의 역함수의 값(t-값) 계산
- =qt(p, df)
- · p : 확률
- · df : 자유도
- (예) qt(0.9750018, 20)
- [1] 2.086

t Distribution (df = 20)

4. F-분포

(1) pf함수

- pf함수는 F-분포의 확률을 계산
- =pf(q, df1, df2)
 - ·q:분포의 확률값을 구하려는 변량의 값
 - · df1 : 분자의 자유도
 - · df2 : 분모의 자유도
- (예) pf(6.16, 6, 4)
- [1] 0.9499573

- (2) qf함수
- qf함수는 F-분포의 역함수의 값(F-값) 계산
- =qf(p, df1, df2)
 - · p : 확률
 - · df1 : 분자의 자유도
 - · df2 : 분모의 자유도
- (예) qf(0.9499573, 6, 4)
- [1] 6.160002

F Distribution (df1 = 6, df2=4)


```
b3-ch3-6.R
                                                          > #평균=40,표준편차=10인 정규분포에서 42보다 작을 확률
#평균=40,표준편차=10인 정규분포에서 42보다 작을 확률
                                                           > pnorm(42, mean=40, sd=1.5)
                                                           [1] 0.9087888
pnorm(42,mean=40,sd=1.5)
                                                           >
                                                           > #P(Z<K)=0.9087888일 때, K의 값은?
                                                           > gnorm(0.9087888, 40,1.5)
#P(Z<K)=0.9087888일 때, K의 값은?
                                                           [1] 42
qnorm(0.9087888, 40,1.5)
                                                           >
                                                           > #카이제곱 통계량이 18.307, df=10일 때 p의 값은?
                                                           > pchisq(18.307, 10)
                                                           [1] 0.9499994
#카이제곱 통계량이 18.307, df=10일 때 p의 값은?
pchisq(18.307, 10)
                                                           > #P(chisq<К)=0.9499994일 때, K의 값은?
                                                           > qchisq(0.9499994, 10)
                                                           [1] 18.307
#P(chisq<K)=0.9499994일 때, K의 값은?
                                                           > #t-통계량이 2.086, df=20일 때 p의 값은?
achisa(0.9499994, 10)
                                                           > pt(2.086, 20)
                                                           [1] 0.9750018
#t-통계량이 2.086, df=20일 때 p의 값은?
                                                           > #P(t<K)=0.9750018일 때, K의 값은?
                                                           > qt(0.9750018, 20)
                                                           [1] 2.086
                                                           >
                                                           > #F-통계량이 6.16, df1=6, df2=4일 때 p의 값은?
#P(t<K)=0.9750018일 때, K의 값은?
                                                           > pf(6.16, 6, 4)
                                                           [1] 0.9499573
qt(0.9750018, 20)
                                                           > #P(F<K)=0.9499573일 때, K의 값은?
                                                           > qf(0.9499573, 6, 4)
#F-통계량이 6.16, df1=6, df2=4일 때 p의 값은?
                                                           [1] 6.160002
```

#P(F<K)=0.9499573일 때, K의 값은?

qf(0.9499573, 6, 4)

pt(2.086, 20)

pf(6.16, 6,4)