



- 1. 차트 만들기 (1) 차트 구성요소
- 차트는 차트 제목, 축 제목, Y축(항목), 항목제목, X축(항목 축), 데이터 계열, 데이터 요소, 데이터 레이블, 데이터 표, 범례, 눈금선, 그림영역, 차트 영역 등으로 구성

(2) 차트 작성

- 통합문서에 있는 자료로 그래프를 그릴 수 있는데 워크시트에 차트를 삽입하거나 차트시트에 차트 작성
- 차트의 내용은 데이터와 연결되어 있으므로 데이터의 값이 변하면 차트의 내용도 자동적으로 변경됨
- (예) 2000년부터 2017년까지 우리나라 17개 시도의 재정자립도를 나타내 주는 finance.xlsx 파일로 <그 림 4-1>의 연도별 지방재정자립도('00-'17) 차트(꺾은선 형)는 다음과 순서로 만들 수 있음
  - · <u>http://kanggc.iptime.org/book/data/finance.xlsx</u>로 파일을 다운로드
  - ·B1셀부터 S18셀까지 선택한 후 삽입-차트-꺾은선형 차트 삽입을 클릭하고, 2차원 꺾은선 형 중 꺾은선형 을 선택하면 만들어 지는 그림을 크게 한 후 차트 제목에 연도별 지방재정자립도('00-'17)를 입력
  - · 그림 하단에 있는 계열1,...,계열17의 범례를 선택하고 마우스 오른 쪽을 클릭하여 범례 서식을 선택하면 나타나는 범례 서식-범례 옵션에서 범례 위치 오른 쪽을 선택
  - ·계열1,...,계열17로 되어 있는 범례를 지역명으로 바꾸기 위해 범례를 선택하고 마우스 오른 쪽을 클릭하 여 데이터 선택을 클릭하면 데이터 원본 선택 대화상자가 나타남
  - · 범례항목(계열)의 계열1을 선택하고 편집을 누르면 나타나는 계열 편집 대화상자의 계열 이름에 A2셀을 마우스로 클릭하고 확인을 누르면 계열이 서울로 변경되는데 이 작업을 나머지 16개 지역에 동일하게 함
  - 한편, Excel에서 만든 차트를 복사한 후 그림판에서 확장자가 bmp, gif, jpg인 그림파일을 만들면 한글에 삽입하거나 홈페이지에 삽입하는 등 유용하게 활용할 수 있음





#### (3) 차트 편집

- 차트를 수정하고자 할 경우 수정하고자 하는 차트를 마우스로 한 번 클릭하여 차트를 먼저 선택하고 마우 스 오른쪽 단추를 눌러 명령을 선택
- ·데이터 선택 : 그림으로 그릴 차트데이터의 범위나 X축에 들어갈 데이터를 수정
- · 차트 영역 서식 : 채우기, 테두리색, 테두리스타일, 그림자, 3차원 서식 등을 수정

#### (4) 차트 변경

차트의 종류를 변경하고자 할 때는 변경하고자 하는 차트를 마우스로 한 번 클릭하여 차트를 먼저 선택하 고 마우스 오른쪽 단추를 눌러 차트종류 변경을 선택

### 2. 이중 축 만들기

- 이중 축 차트는 Y축이 왼쪽 및 오른쪽 두 개로 된 그림
- (예) 통계청 국가통계포털(kosis.kr)에 접속하여 <그림 4-2>와 같이 2000년부터 2016년까지 전국 및 제 주지역의 지역내총생산(GRDP)을 다운로드하고 이중 축 그림 그리기
- <u>http://kanggc.iptime.org/book/data/double.xlsx</u>로 파일을 다운로드
- 데이터를 선택한 후 삽입-차트를 실행하면 전국과 제주의 GRDP의 차이가 너무 커서 아래 그림과 같이 제 주지역의 GRDP는 X축과 거의 구분이 안 되게 그려지는데 이 경우 유용한 것이 이중 축 차트임
- 아래 그림과 같은 이중 축이 필요한 데이트의 차트를 그리기 위해서는 다음과 같이 실행
  - · X축에 연도를 넣기 위해서는 X축(가로 항목 축)을 마우스 오른쪽으로 클릭하여 데이터 선택을 클릭하고, 이 때 나타나는 데이터 원본 선택 대화상자의 가로항목 축 레이블의 편집을 클릭한 후 축 레이블 범위에 서 연도 데이터를 선택
  - ·계열의 범례를 바꾸기 위해서는 해당 계열을 마우스 오른쪽으로 클릭하여 데이터 선택을 클릭하고, 이 때 나타나는 데이터 원본 선택 대화상자의 범례항목 계열의 해당계열을 선택하고 편집을 클릭한 후 계열 편 집 대화상자에서 계열 이름을 입력





- 이중 축 차트를 그리기 위해 제주(또는 계열2)를 선택한 후 마우스 오른쪽을 클릭하여 데이터 계열 서식을 선택하고 계열옵션에서 보조 축을 선택하고 닫기를 클릭
- Y축의 최댓값 및 최솟값을 변경하기 위해서는 세로축을 마우스 오른쪽으로 클릭하여 축 서식 선택을 클릭 하고, 이 때 나타나는 축 서식 대화상자에서 축 옵션의 최댓값과 최솟값을 원하는 값으로 선택





- 한편, 아래 왼쪽 그림과 같이 한 축에는 수준을 그리고 다른 축에는 증가율을 그리는 등 서로 다른 스케일 을 가진 이중 축 차트를 그릴 수 있는데 다음과 같이 실행
- ·제주 GRDP 증가율을 구하기 위해서 D3셀에 식 =(C3-C2)/C2\*100을 입력하고 D18셀까지 복사
- · C3셀부터 D18셀까지 선택한 후 삽입-차트-꺾은선형 차트 삽입을 클릭하고, 2차원 꺾은선형 중 꺾은선형 을 선택
- · 차트 제목에 '명목 GRDP 추세(제주)'를 입력하고, 계열2를 선택한 후 마우스 오른쪽을 클릭하여 데이터 계열 서식을 선택하고 계열옵션에서 보조 축을 선택하고 닫기를 클릭
- ·계열1을 선택하여 마우스 오른쪽을 클릭하여 차트 종류 변경을 선택하면 나타나는 차트 종류 변경 대화 상자에서 아래 오른쪽 그림과 같이 선택하고 확인을 클릭

(또는 삽입-차트에서 콤보 차트 삽입을 클릭하고 묶은 세로 막대형-꺾은선형, 보조축을 선택)



6

#### 3. 포지셔닝 맵 그리기

- X축과 Y축의 특정 값(예: 평균)을 기준으로 4개의 영역으로 구분한 후 데이터를 해당 분면에 그려보는 것을 포지셔닝 맵이라고 함
- · (예) 제주지역 전통시장의 경쟁력과 효율성을 나타내는 position.xlsx로 포지셔닝 맵 그리기
  - ·<u>http://kanggc.iptime.org/book/data/position.xlsx</u>로 파일을 다운로드
  - · C2셀부터 D14셀까지 데이터를 선택한 후 삽입-차트-분산형을 실행한 후 나타나는 분산형 그림에서 차트 제목, 가로축과 세로축의 주 눈금선을 선택하여 삭제
  - ·계열을 마우스 오른쪽을 클릭하여 데이터 선택을 실행한 후 데이터 원본 선택 대화상자에서 계열1을 선택 하여 편집을 클릭한 후 아래 왼쪽 그림의 계열 편집 대화상자와 동일하게 계열 이름,계열 X값,계열 Y값을 입 력한 후 확인 클릭하고, 추가를 클릭하여 계열2를 동일한 방법으로 추가하고 나머지 계열 13까지 추가
  - ·계열 요소를 마우스 오른쪽으로 클릭한 후 데이터 레이블 추가를 실행하고, 이 때 만들어진 데이터 레이블 을 마우스 오른쪽으로 클릭한 후 데이터 레이블 서식을 실행하고, 데이터 레이블 서식의 레이블 옵션에서 계 열이름을 클릭하고 다른 것은 선택 해제하고 레이블 위치는 아래쪽으로 함
  - · 동일한 작업을 모든 계열 레이블에 수행하고, 삽입-도형에서 X축 및 Y축의 평균을 나타내는 점선을 각각 그 려 넣고, 텍스트로 시장유형을 삽입하면 아래 오른쪽 그림과 같은 포지셔닝 맵을 구할 수 있음



# 」제주대학교 Ⅱ. R 그림 그리기

# 1. 선그래프 그리기

b3-ch4-1.R library(openxlsx) df<-read.xlsx("http://kanggc.iptime.org/book/data/finance-k.xlsx") df\_dat<-data.matrix(df) year<-df\_dat[,1];su<-df\_dat[,2];bs<-df\_dat[,3];dg<-df\_dat[,4] ic<-df\_dat[,5];gj<-df\_dat[,6];dj<-df\_dat[,7];us<-df\_dat[,8] sj<-df\_dat[,9];gg<-df\_dat[,10];gw<-df\_dat[,11];cb<-df\_dat[,12] cn<-df\_dat[,13];jb<-df\_dat[,14];jn<-df\_dat[,15];gb<-df\_dat[,16] gn<-df\_dat[,17];jj<-df\_dat[,18]

plot(year,su,type="l",ylab="",col="black", ylim=c(0,100))
lines(year,bs,col="green");lines(year,dg,col="blue")
lines(year,ic,col="red");lines(year,gj,col="brown")
lines(year,dj,col="gray");lines(year,us,col="gold")
lines(year,sj,col="orange");lines(year,cb,col="black")
lines(year,cn,col="red");lines(year,jb,col="blue")
lines(year,jn,col="gray");lines(year,gb,col="gold")
lines(year,gn,col="orange");lines(year,jj,col="black")

legend("bottomleft",legend=c("서울","부산","대구","인천","광주","대전 ","울산","세종","경기","강원","충북","충남","전북","전남","경북","경남"," 제주"),col=c(1,3),lty=1) b3-ch4-1.R(명령어 설명) # plot에 범례를 추가하는 함수로 "bottomleft"는 범례의 위치, legend=c()는 괄호 안에 범례 내용을 입력



# 2. 이중 축 차트 그리기

| b3-ch4-2.R                                                                          | b3-ch4-2.R(명령어 설명)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|-------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| library(openxlsx)                                                                   | # z축을 위한 공간으로 그림의 네 면에 지정된 마진의 선(line) 수                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| df<-read.xlsx("http://kanggc.iptime.org/book/data/double.xlsx")                     | ·<br>- 는 c(아래쪽, 왼쪽, 위, 오른쪽) 형태이며 기본값은 c(5, 4, 4, 2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| df_dat<-data.matrix(df)                                                             | + 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| year<-df_dat[,1];korea<-df_dat[,2];jeju<-df_dat[,3]                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| par(mfrow=c(1,2))                                                                   | 🛪 # 현재 그림에 측면, 위치, 레이블 등을 지정할 수 있도록 새로운                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| par(mar = c(5, 4, 4, 4) + 0.3) # Leave space for z axis                             | 축을 추가하는 것으로 side=4는 우측 측면을 나타냄                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| plot(year, korea,type="l",col="red") # first plot                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| par(new = TRUE)                                                                     | # 텍스트를 현재 그림 영역의 네 가지 여백 중 하나에 쓰는 함수                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| plot(year, jeju, type = "I", axes = FALSE, col="black",bty = "n", xlab = "", ylab = | 로 side=4는 우측 측면을 나타냄                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| "")                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| axis(side=4, at = pretty(range(jeju)))                                              | # ts는 시계열 객체를 생성하는 함수로 여기서는 2000년부터                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| mtext("jeju", side=4, line=3)                                                       | 2016년까지 연도별 시계열을 생성                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| year_1<-year[2:17]                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| jeju.ts<-ts(jeju,start=2000,end=2016,frequency=1)                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| ljeju<-lag(jeju.ts,k=-1)                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| gjeju<-((jeju.ts-ljeju)/ljeju)*100                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| jeju_1<-jeju[2:17]                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| par(mar = c(5, 4, 4, 4) + 0.3) # Leave space for z axis                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| plot(year_1, jeju_1,type="h",col="red",ylim=c(0,1.8e+07))  # first plot             | kor<br>lee-09 1.1<br>lee-09 1.1<br>l |
| par(new = TRUE)                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| plot(year_1, gjeju, type = "I", axes = FALSE, col="black",bty = "n", xlab = "", yl  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| ab = "")                                                                            | <sup>a</sup> 2000 2005 2010 2015 2005 2010 2015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| axis(side=4, at = pretty(range(gjeju)))                                             | year year_1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| mtext("gjeju", side=4, line=3)                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |

# 3. 포지셔닝 맵 그리기

| b3-ch4-3.R                                                 |    |       |                                      | b3-ch4-   | 3.R(명령(    | 에 설명)    |          |       |     |
|------------------------------------------------------------|----|-------|--------------------------------------|-----------|------------|----------|----------|-------|-----|
| library(openxlsx)                                          |    |       |                                      |           |            |          |          |       |     |
| df<-read.xlsx("http://kanggc.iptime.org/book/data/position | 7  | # ce  | x는 텍스트와 기                            | 기호의 크기를 니 | 나타내는 것     | 것으로 c    | ex=1.5는  | 기본 값0 | 비비해 |
| -e.xlsx")                                                  | ~  | 1.5배  | 확대를 나타냄                              | 1         |            |          |          |       |     |
| id<-df\$id                                                 |    |       |                                      |           |            |          |          |       |     |
| name<-df\$name                                             | 7  | # 지경  | 정된 좌표에 일                             | 련의 점을 그리는 | ≞데 pch=    | 16은 🌒    | 을 나타냄    |       |     |
| comp<-df\$comp                                             |    |       |                                      |           |            |          |          |       |     |
| eff<-df\$eff                                               | 7  | # 점 9 | 의 아래쪽에 id를                           | 를 레이블로 추기 | ' <b>ŀ</b> |          |          |       |     |
| mc=mean(comp)                                              |    |       |                                      |           |            |          |          |       |     |
| me=mean(eff)                                               | 7  | # x축  | 에 수직선, y축                            | 에 수평선을 점  | 선으로 추      | 가        |          |       |     |
| plot(comp,eff,type="n",cex=1.5, xlim=c(0,70),ylim=c(0,1))  |    |       |                                      |           |            |          |          |       |     |
| points(comp,eff, pch=16,cex=1.5,col="blue")                | 7  | # nai | me을 범례로 _                            | 1림의 좌측 하딘 | 에 추가       |          |          |       |     |
| with(df,text(eff~comp, labels=id, pos=1))                  |    |       |                                      |           |            |          |          |       |     |
| abline(v=mc, h=me, col="blue",lty=2)                       |    |       |                                      |           |            |          |          |       |     |
| legend("bottomleft",legend=name)                           |    | 6 -   |                                      |           |            | ••       | •        | • •   | •   |
|                                                            |    |       |                                      |           |            | 2 6<br>4 | 3<br>1 • | 95    | 7   |
|                                                            |    | 0.8   |                                      | <br>-     |            |          | 12       |       |     |
|                                                            |    | 0.6   | 1.동문공설시장<br>2.동문수산시장                 | 8         |            |          |          |       |     |
|                                                            | 40 | 4     | 3.동문재래시상<br>4.동문시장<br>5.중앙로상점가       |           |            | •        |          |       |     |
|                                                            |    | o T   | 6.칠성로상점가<br>7.서귀포매일올레시장<br>8.모슬포중앙시장 |           | •          | 13       | 11       |       |     |
|                                                            |    | 0.2   | 9.중앙지하상가<br>10.한림매일시장                |           | 10         |          |          |       |     |
|                                                            |    | 0.0   | 12.서문공설시장<br>13.도남시장                 |           |            |          |          |       |     |
|                                                            |    |       | 0 10                                 | 20        | 30         | 40       | 50       | 60    | 70  |
|                                                            |    |       |                                      |           | comp       |          |          |       |     |





#### 1. 도수분포표

- 도수분포표를 만들기 위해서는 두 가지가 필요한데 하나는 도수분포를 수행하게 될 영역의 값(입력범위) 이고 다른 하나는 위의 영역 값에 대한 범위가 나열된 계급구간임
- · 먼저 계급구간을 오름차순으로 설정한 후 데이터-분석-데이터 분석을 실행하면 통계 데이터분석 대화상 자가 나타나고, 히스토그램을 선택하면 히스토그램대화상자가 나타나는데 입력범위와 계급구간 및 몇 가 지(차트출력)를 선택한 후 확인을 누르면 도수분포표와 히스토그램을 만들어 줌
- 도수 결과는 자동적으로 갱신이 되지 않으므로 값영역이나 구간값 영역의 데이터를 변경하는 경우 자료/ 도수분포를 재실행해야 함
- (예) 우리나라 지자체의 지방재정자립도를 나타내는 finance-k.xlsx로 제주도 지방재정자립도의 도수분포 표 및 히스토그램을 작성해 보라
- · <u>http://kanggc.iptime.org/book/data/finance-k.xlsx</u>로 파일을 다운로드
- · R열은 제주자료를 나타내 주고 있는데 T8셀부터 T12셀에 계급 구간 26, 30,34,38,42를 입력
- ·데이터-데이터분석-히스토그램을 선택하고 확인을 누르면 아래 왼쪽 그림과 같은 히스토그램 대화상자가 나타나는데 입력 범위는 제주의 지방재정자립도를 나타내는 데이터이고, 계급 구간은 앞에서 설정하여 입 력한 것으로 확인을 누르면 아래 오른쪽 그림과 같은 도수분포표 및 히스토그램을 작성

| R    | S | Т    | U | V         | W                 | Х            | Y        | Z     | AA         | AB |    |      |     |   |    |      |      |      |        |      |    |
|------|---|------|---|-----------|-------------------|--------------|----------|-------|------------|----|----|------|-----|---|----|------|------|------|--------|------|----|
| 제주   |   |      |   |           |                   |              |          |       |            |    |    | Α    | В   | С | D  | F    | F    | G    | Н      |      | J  |
| 31.2 |   |      |   |           |                   |              |          |       |            |    | 1  | 계급   | 빈도수 | - | _  | _    |      | _    |        |      |    |
| 36.6 |   |      |   |           |                   |              |          |       |            |    | 2  | 26.0 | 2   |   |    |      |      | 3333 |        |      | 22 |
| 37.4 |   |      |   | 히스토그램     |                   |              |          | ?     | X          |    | -  | 20.0 |     |   |    |      | 늵    | ᆺᆮᄀ  | 리      |      |    |
| 34.7 |   |      |   | 0124      |                   |              |          |       | _          |    | 3  | 30.0 | 4   |   |    |      | 익    | ᅳ노그  |        |      |    |
| 39.3 |   |      |   | 입력 범위(j): | :                 | \$R\$2:\$R\$ | 19 📧     | 확인    |            |    | 4  | 34.0 | 5   |   |    | -    |      | _    |        |      |    |
| 33.8 |   | 26.0 |   |           | \-                | ¢700.070     | 10 EE    | 취소    |            |    | 5  | 38.0 | 4   |   |    | 6    |      | 5    |        |      |    |
| 26.4 |   | 30.0 |   | 세급 구간(8)  | ).                | \$1\$8.\$1\$ | 2        |       |            |    |    | 30.0 | -   |   |    |      | 4    |      | 4      |      |    |
| 26.3 |   | 34.0 |   | 이름표([     | .)                |              |          | 도움말(! | <u>+</u> ) |    | 6  | 42.0 | 3   |   | 1  | 4 2  |      |      |        | 5    | 8  |
| 25.2 |   | 38.0 |   | *** 0 /d  |                   |              |          |       |            |    | 7  |      |     |   |    | 2    |      |      |        |      | *  |
| 26.1 |   | 42.0 |   | 물덕 곱신     |                   |              | 12       |       |            |    | 0  |      |     |   |    |      |      |      |        |      |    |
| 25.1 |   |      |   | ○ 술덕 범위   | 4( <u>0</u> ):    |              | <b>E</b> |       |            |    | ŏ  |      |     |   |    | 0    |      | _    |        |      |    |
| 28.5 |   |      |   | ◉ 새로운 유   | 워크시트(P):          |              |          |       |            |    | 9  |      |     |   |    | 26.0 | 30.0 | 34.0 | 38.0 4 | 42.0 |    |
| 30.6 |   |      |   | ○ 새로운 통   | 통합 문서( <u>W</u> ) |              |          |       |            |    | 10 |      |     |   |    |      |      | 궤그   |        |      |    |
| 34.0 |   |      |   | □ 파레토: •  | 순차적 히스.           | 토그램(A)       |          |       |            |    | 10 |      |     |   |    |      |      | 110  |        |      |    |
| 36.4 |   |      |   | <br>누적 백분 | 분율( <u>M</u> )    | _            |          |       |            |    | 11 |      |     |   |    |      |      |      |        |      |    |
| 38.2 |   |      |   | ☑ 차트 출력   | 력( <u>C</u> )     |              |          |       |            |    | 12 |      |     |   | 61 |      |      | 2222 |        |      |    |
| 39.6 |   |      |   |           |                   |              |          |       |            |    |    |      |     |   |    |      |      |      |        |      |    |
|      |   |      |   |           |                   |              |          |       |            |    |    |      |     |   |    |      |      |      |        |      |    |

#### 2. 기술통계량

기숙 통계법

- 기술통계량이란 연속형 데이터의 집중화 경향, 분산도, 분포 등에 대한 특성을 파악하기 위하여 의미 있는 수치로 요약된 것
- · 집중화 경향 : 평균, 중위수, 최빈값 등
- · 흩어짐의 정도 : 최댓값, 최솟값, 범위, 분산, 표준편차, 변동계수 등
- · 분포의 형태 및 대칭성의 정도 : 첨도, 왜도 등
- (예) 우리나라 주요 거시경제변수를 나타내는 describe.xlsx로 기술통계량 계산해 보라
- · <u>http://kanggc.iptime.org/book/data/describe.xlsx</u>로 파일을 다운로드
- ·데이터-분석-데이터 분석을 실행하면 나타나는 통계 데이터분석 대화상자에서 기술통계법을 선택하면 나 타나는 아래 왼쪽 그림과 같은 기술통계법 대화상자에서 다음을 선택
- ·데이터 입력 범위를 선정하는데 이때 계열이름이 있는 셀과 자료가 입력되어 있는 셀인 B1셀부터 E16까 지 모두 선택
- · 첫째 행 이름표 사용 및 요약통계량에 체크한 후 확인을 클릭하면 아래 오른쪽 그림과 같이 선택된 자료 에 관한 각종 요약통계량을 계산

| 12 0 12                 |                  |          |                 |
|-------------------------|------------------|----------|-----------------|
| 입력                      |                  | _        | 확인              |
| 입력 범위([]):              | \$B\$1:\$E\$16   | <b>1</b> | +1.4            |
| 데이터 방향:                 |                  |          | 위오              |
| ☑ 첫째 형 이름표 사용(L)        | ○ 행( <u>R</u> )  |          | 도움말( <u>H</u> ) |
| 출력 옵션                   |                  |          |                 |
| ○ 출력 범위( <u>0</u> ):    |                  | <b>*</b> |                 |
| ● 새로운 워크시트( <u>P</u> ): |                  |          |                 |
| ○ 새로운 통합 문서(W)          |                  |          |                 |
| ✓ 요약 통계량( <u>S</u> )    |                  |          |                 |
| 🗌 평균에 대한 신뢰 수준()        | <u>v</u> ): 95 % |          |                 |
| □ K번째 큰 값( <u>A</u> ):  | 1                |          |                 |
| □ K번째 작은값(M):           | 1                |          |                 |

|    | A        | В            | С        | D            | E      | F           | G           | Н        |
|----|----------|--------------|----------|--------------|--------|-------------|-------------|----------|
| 1  | 소비자물가상승률 |              | 주택담보대출금리 |              | GDP성장률 |             | GDP디플레이터상승률 |          |
| 2  |          |              |          |              |        |             |             |          |
| 3  | 평균       | 2.553333333  | 평균       | 5.103333333  | 평균     | 3.84        | 평균          | 2.053333 |
| 4  | 표준 오차    | 0.294693815  | 표준 오차    | 0.332921651  | 표준 오차  | 0.45269563  | 표준 오차       | 0.300138 |
| 5  | 중앙값      | 2.8          | 중앙값      | 5.39         | 중앙값    | 3.3         | 중앙값         | 2.4      |
| 6  | 최빈값      | 2.8          | 최빈값      | #N/A         | 최빈값    | 2.8         | 최빈값         | 3        |
| 7  | 표준 편차    | 1.141344237  | 표준 편차    | 1.289400008  | 표준 편차  | 1.753282636 | 표준 편차       | 1.162428 |
| 8  | 분산       | 1.302666667  | 분산       | 1.662552381  | 분산     | 3.074       | 분산          | 1.351238 |
| 9  | 첨도       | -0.516421948 | 첨도       | -0.861333643 | 첨도     | 0.07950617  | 첨도          | -1.213   |
| 10 | 왜도       | 0.047769618  | 왜도       | -0.408992108 | 왜도     | 0.495655071 | 왜도          | -0.37418 |
| 11 | 범위       | 4            | 범위       | 4.09         | 범위     | 6.7         | 범위          | 3.6      |
| 12 | 최소값      | 0.7          | 최소값      | 2.91         | 최소값    | 0.7         | 최소값         | -0.1     |
| 13 | 최대값      | 4.7          | 최대값      | 7            | 최대값    | 7.4         | 최대값         | 3.5      |
| 14 | 합        | 38.3         | 합        | 76.55        | 합      | 57.6        | 합           | 30.8     |
| 15 | 관측수      | 15           | 관측수      | 15           | 관측수    | 15          | 관측수         | 15       |

# ᠕조개말 Ⅱ. R 도수분포표 및 기술통계량

# 1. 도수분포표

| b3-ch4-4.R                                                        | b3-ch4-4.R(명령어 설명)             |
|-------------------------------------------------------------------|--------------------------------|
| library(openxlsx)                                                 | # 5개의 계급으로 계급 구간을 나눔           |
| df<-read.xlsx("http://kanggc.iptime.org/book/data/finance-k.xlsx" | # 데이터가 어느 계급 구간에 속하는지 식별하고 코드화 |
| df_dat<-data.matrix(df)                                           | # 각 계급 구간에 속하는 데이터 수를 계산       |
| year<-df_dat[,1]                                                  | # 계급 구간 및 도수로 도수분포표를 생성        |
| jj<-df_dat[,18]                                                   |                                |
| 11                                                                |                                |
| bins<-c(22,26,30,34,38,42)                                        | Histogram of jj                |
| bins                                                              |                                |
| class<-cut(jj,breaks=bins)<br>class                               |                                |
| table(class)                                                      |                                |
| transform(table(class),Rel_Freq=prop.table(Freq))                 |                                |
| hist(jj, breaks=bins, xlim=c(22,42))                              | 25 30 35 40                    |
|                                                                   | ے۔<br>ا                        |

#### 에 제주대학교 JEJU NATIONAL UNIVERSITY

# 2. 기술통계량

| b3-ch4-5.R                               |                                       |           |                               | b3-ch4                            | 4-5.R(명령             | 어 설명)                                    |                                        |
|------------------------------------------|---------------------------------------|-----------|-------------------------------|-----------------------------------|----------------------|------------------------------------------|----------------------------------------|
| library(openxlsx)                        | 1                                     | # f       | R 객체를 열 또는                    | - 행으로 결합                          |                      |                                          |                                        |
| library(fBasics)                         |                                       | # -       | 분산-공분산을 🤅                     | <br>계산                            |                      |                                          |                                        |
| df<-read.xlsx("http://kanggc.iptime.org/ | /book/data/describe-e.x/s             | <br>  # 1 | <br>fBasics 패키지를              | <br>를 이용하여 기                      | 술통계량을                | ·계산                                      |                                        |
| ×")                                      |                                       |           | (15                           |                                   |                      |                                          |                                        |
| df_dat<-data.matrix(df)                  |                                       | > s       | cpi                           | w)<br>intere                      | st                   | gdp                                      | deflator                               |
| cpi<-df_dat[,2]                          |                                       | Mi<br>1s  | n. :0.700<br>t Ou.:1.750      | Min. :2<br>1st Ou.:4              | .910 мі<br>.245 1s   | n. :0.70<br>t Qu.:2.80                   | Min. :-0.100<br>1st Ou.: 1.000         |
| interest<-df_dat[,3]                     |                                       | Me        | dian :2.800                   | Median :5                         | .390 Me              | dian :3.30                               | Median : 2.400                         |
| gdp<-df_dat[,4]                          |                                       | 3n        | d Qu. : 3. 200                | 3rd Qu.:6                         | .035 3r              | d Qu.:5.05                               | 3rd Qu.: 3.050                         |
| deflator<-df_dat[,5]                     |                                       | Ма        | ix. :4.700                    | Max. :7                           | .000 Ma              | x. :7.40                                 | Max. : 3.500                           |
| df_new<-cbind(cpi, interest, gdp, deflat | or)                                   |           | > (var<-v                     | ar (df_new)                       | )                    |                                          |                                        |
| df_new                                   |                                       |           | cpi                           | cp1<br>1.3026667                  | 1.202952             | t gdp<br>4 0.2998571                     | deflator<br>0.6090952                  |
| summary(df_new)                          |                                       |           | interest                      | 1.2029524                         | 1.662552             | 4 0.8371429                              | 0.6597381                              |
| (var<-var(df_new))                       |                                       |           | gap<br>deflator               | 0.29985/1                         | 0.83/142             | 9 3.0740000<br>1 0.1448571               | 1.3512381                              |
| (sd1<-sd(cpi))                           |                                       |           | > basicState                  | s(df_new)                         |                      |                                          |                                        |
| (sd2<-sd(interest))                      |                                       |           |                               | cpi                               | interes              | st gd                                    | o deflator                             |
| (sd3<-sd(gdp))                           |                                       |           | nobs<br>NAs                   | 0.000000                          | 0.00000              | 0 15.00000                               | 0 15.000000                            |
| (sd4<-sd(deflator))                      |                                       |           | Minimum                       | 0.700000                          | 2.91000              | 0.70000                                  | 0 -0.100000                            |
| basicStats(df_new)                       |                                       |           | 1. Quartile                   | 1.750000                          | 4.24500              | 2.80000                                  | 0 1.000000                             |
|                                          | > (sd1<-sd(cpi))<br>[1] 1.141344      |           | 3. Quartile<br>Mean<br>Median | 3.200000<br>2.553333<br>2.800000  | 6.03500<br>5.10333   | 0 5.05000<br>3 3.84000<br>0 3.30000      | 0 3.050000<br>0 2.053333<br>0 2.400000 |
|                                          | > (sd2<-sd(interest))<br>[1] 1.2894   |           | Sum<br>SE Mean                | 38.300000<br>0.294694<br>1.921278 | 76.55000             | 0 57.60000<br>2 0.45269                  | 0 30.800000<br>5 0.300138              |
|                                          | > (sd3<-sd(gdp))<br>[1] 1.753283      |           | UCL Mean<br>Variance<br>Stdev | 3.185389<br>1.302667<br>1.141344  | 5.81737<br>1.66255   | 79 4.810930<br>52 3.074000<br>00 1.75328 | 5 2.697064<br>0 1.351238<br>3 1.162428 |
|                                          | > (sd4<-sd(deflator))<br>[1] 1.162428 |           | Skewness<br>Kurtosis          | 0.038640                          | -0.33082<br>-1.23587 | 29 0.400930<br>76 -0.665100              | 0 -0.302666<br>0 -1.449217             |

#### 1. 도수분포표

- 도수분포표를 만들기 위해서는 두 가지가 필요한데 하나는 도수분포를 수행하게 될 영역의 값(입력범위) 이고 다른 하나는 위의 영역 값에 대한 범위가 나열된 계급구간임
- · 먼저 계급구간을 오름차순으로 설정한 후 데이터-분석-데이터 분석을 실행하면 통계 데이터분석 대화상 자가 나타나고, 히스토그램을 선택하면 히스토그램대화상자가 나타나는데 입력범위와 계급구간 및 몇 가 지(차트출력)를 선택한 후 확인을 누르면 도수분포표와 히스토그램을 만들어 줌
- 도수 결과는 자동적으로 갱신이 되지 않으므로 값영역이나 구간값 영역의 데이터를 변경하는 경우 자료/ 도수분포를 재실행해야 함
- (예) 우리나라 지자체의 지방재정자립도를 나타내는 finance-k.xlsx로 제주도 지방재정자립도의 도수분포 표 및 히스토그램을 작성해 보라
- · <u>http://kanggc.iptime.org/book/data/finance-k.xlsx</u>로 파일을 다운로드
- · R열은 제주자료를 나타내 주고 있는데 T8셀부터 T12셀에 계급 구간 26, 30,34,38,42를 입력
- ·데이터-데이터분석-히스토그램을 선택하고 확인을 누르면 아래 왼쪽 그림과 같은 히스토그램 대화상자가 나타나는데 입력 범위는 제주의 지방재정자립도를 나타내는 데이터이고, 계급 구간은 앞에서 설정하여 입 력한 것으로 확인을 누르면 아래 오른쪽 그림과 같은 도수분포표 및 히스토그램을 작성

| R    | S | Т    | U | V              | W                  | Х               | Y    | Z     | AA | AB |    |      |     |   |     |       |      |      |      |      |   |
|------|---|------|---|----------------|--------------------|-----------------|------|-------|----|----|----|------|-----|---|-----|-------|------|------|------|------|---|
| 제주   |   |      |   |                |                    |                 |      |       |    |    |    | А    | В   | С | D   | E     | F    | G    | Н    |      | J |
| 33.6 |   |      |   |                |                    |                 |      |       |    |    | 1  | 계급   | 빈도수 |   | (1) |       |      | 5555 |      |      |   |
| 36.6 |   |      |   |                |                    |                 |      |       |    |    | 2  | 26.0 | 2   |   | 1   |       |      |      | _    |      | 7 |
| 3/.4 |   |      |   | 히스토그램          |                    |                 |      | ?     | ×  |    | 3  | 30.0 | 4   |   |     |       | 히    | 스토그  | 램    |      |   |
| 34.7 |   |      |   | 입력<br>입력 범위(1) |                    | \$R\$2*\$R\$    | 19 📧 | 확인    |    |    | 4  | 34.0 | 5   |   |     |       |      |      | -    |      |   |
| 33.8 |   | 26.0 |   | 계급 구간(B        | i:                 | \$T\$8:\$T\$    | 2    | 취소    |    |    | 5  | 38.0 | 4   |   |     | 6     | 4    | 5    | 4    |      |   |
| 26.3 |   | 34.0 |   | □ 이름표([        | )                  |                 |      | 도움말() | Ð  |    | 6  | 42.0 | 3   |   |     | 4 -   |      |      | ÷.   | 3    | 2 |
| 25.2 |   | 38.0 |   | 출력 옵션          |                    |                 |      |       |    |    | 7  |      |     |   | 님   | 2 - 2 |      |      |      |      | 2 |
| 25.1 |   | 72.0 |   | ○ 출력 범위        | l( <u>O</u> ):     |                 |      |       |    |    | 8  |      |     |   |     | 0     |      |      |      |      |   |
| 28.5 |   |      |   | ● 새로운 위        | ↓크시트(₽):           |                 |      | ]     |    |    | 9  |      |     |   |     | 26.0  | 30.0 | 34.0 | 38.0 | 42.0 |   |
| 30.6 |   |      |   | ○ 새로운 통        | 합 문서( <u>W</u> )   |                 |      |       |    |    | 10 |      |     |   |     |       |      | 계급   |      |      |   |
| 34.0 |   |      |   | □ 파레토:         | 순차적 히스.<br>= 윤/M/) | 토그램( <u>A</u> ) |      |       |    |    | 11 |      |     |   |     |       |      |      |      |      |   |
| 38.2 |   |      |   | ☑ 구덕 덕년        | 역( <u>C</u> )      |                 |      |       |    |    | 12 |      |     |   | 1   |       |      | 9999 |      |      |   |
| 39.6 |   |      |   |                |                    |                 |      |       |    |    |    |      |     |   |     |       |      |      |      |      |   |

#### 2. 기술통계량

기숙 통계법

기술통계량이란 연속형 데이터의 집중화 경향, 분산도, 분포 등에 대한 특성을 파악하기 위하여 의미 있는 수치로 요약된 것

- · 집중화 경향 : 평균, 중위수, 최빈값 등
- · 흩어짐의 정도 : 최댓값, 최솟값, 범위, 분산, 표준편차, 변동계수 등
- · 분포의 형태 및 대칭성의 정도 : 첨도, 왜도 등
- (예) 우리나라 주요 거시경제변수를 나타내는 describe.xlsx로 기술통계량 계산해 보라
- · <u>http://kanggc.iptime.org/book/data/describe.xlsx</u>로 파일을 다운로드
- ·데이터-분석-데이터 분석을 실행하면 나타나는 통계 데이터분석 대화상자에서 기술통계법을 선택하면 나 타나는 아래 왼쪽 그림과 같은 기술통계법 대화상자에서 다음을 선택
- ·데이터 입력 범위를 선정하는데 이때 계열이름이 있는 셀과 자료가 입력되어 있는 셀인 B1셀부터 E16까 지 모두 선택
- · 첫째 행 이름표 사용 및 요약통계량에 체크한 후 확인을 클릭하면 아래 오른쪽 그림과 같이 선택된 자료 에 관한 각종 요약통계량을 계산

| 12 0 18                 |                  |          | . ,    |
|-------------------------|------------------|----------|--------|
| 입력                      |                  |          | 화인     |
| 입력 범위(!):               | \$B\$1:\$E\$16   | <b>1</b> |        |
| 데이터 방향:                 |                  |          | 취소     |
|                         | ○ 행( <u>R</u> )  |          | 도움말(H) |
| ☑ 첫째 행 이름표 사용(L)        |                  |          |        |
|                         |                  |          |        |
| 출력 옵션                   |                  | -        |        |
| ○ 출력 범위( <u>○</u> ):    |                  | <b>1</b> |        |
| ● 새로운 워크시트(P):          |                  |          |        |
| ○ 새로운 통합 문서( <u>W</u> ) |                  |          |        |
| ✓ 요약 통계량( <u>S</u> )    |                  |          |        |
| 🔲 평균에 대한 신뢰 수준(N        | <u>J</u> ): 95 % |          |        |
| □ K번째 큰 값( <u>A</u> ):  | 1                |          |        |
| □ K번째 작은값( <u>M</u> ):  | 1                |          |        |
|                         |                  |          |        |

|    | А                 | В            | С        | D            | E      | F           | G           | Н        |
|----|-------------------|--------------|----------|--------------|--------|-------------|-------------|----------|
| 1  | 소비자물가상승률          |              | 주택담보대출금리 |              | GDP성장률 |             | GDP디플레이터상승률 |          |
| 2  |                   |              |          |              |        |             |             |          |
| 3  | 평균                | 2.553333333  | 평균       | 5.103333333  | 평균     | 3.84        | 평균          | 2.053333 |
| 4  | 표준 오차             | 0.294693815  | 표준 오차    | 0.332921651  | 표준 오차  | 0.45269563  | 표준 오차       | 0.300138 |
| 5  | 중앙값               | 2.8          | 중앙값      | 5.39         | 중앙값    | 3.3         | 중앙값         | 2.4      |
| 6  | 최빈값               | 2.8          | 최빈값      | #N/A         | 최빈값    | 2.8         | 최빈값         | 3        |
| 7  | 표준 편차             | 1.141344237  | 표준 편차    | 1.289400008  | 표준 편차  | 1.753282636 | 표준 편차       | 1.162428 |
| 8  | 분산                | 1.302666667  | 분산       | 1.662552381  | 분산     | 3.074       | 분산          | 1.351238 |
| 9  | 첨도                | -0.516421948 | 첨도       | -0.861333643 | 첨도     | 0.07950617  | 첨도          | -1.213   |
| 10 | 왜도                | 0.047769618  | 왜도       | -0.408992108 | 왜도     | 0.495655071 | 왜도          | -0.37418 |
| 11 | 범위                | 4            | 범위       | 4.09         | 범위     | 6.7         | 범위          | 3.6      |
| 12 | 최소 <mark>값</mark> | 0.7          | 최소값      | 2.91         | 최소값    | 0.7         | 최소값         | -0.1     |
| 13 | 최대값               | 4.7          | 최대값      | 7            | 최대값    | 7.4         | 최대값         | 3.5      |
| 14 | 합                 | 38.3         | 합        | 76.55        | 합      | 57.6        | 합           | 30.8     |
| 15 | 관측수               | 15           | 관측수      | 15           | 관측수    | 15          | 관측수         | 15       |
|    |                   |              |          |              |        |             |             |          |

# ▲ 제조매 프 표. R 도수분포표 및 기술통계량

# 1. 도수분포표

| b3-ch4-4.R                                                             | b3-ch4-4.R(명령어 설명)             |
|------------------------------------------------------------------------|--------------------------------|
| library(openxlsx)                                                      | # 5개의 계급으로 계급 구간을 나눔           |
| df<-read.xlsx("http://kanggc.iptime.org/book/data/finance-k.xlsx"<br>) | # 데이터가 어느 계급 구간에 속하는지 식별하고 코드화 |
| df_dat<-data.matrix(df)                                                | 기 # 김 세급 꾸진에 속아는 데이터 구들 세진     |
| year<-df_dat[,1]                                                       | # 계급 구간 및 도수로 도수분포표를 생성        |
| jj<-df_dat[,18]                                                        |                                |
|                                                                        |                                |
| bins<-c(22,26,30,34,38,42)                                             | Histogram of jj                |
| bins                                                                   |                                |
| class<-cut(jj,breaks=biris)                                            |                                |
| class                                                                  |                                |
| table(class)                                                           |                                |
| transform(table(class))                                                |                                |
| hist(jj, breaks=bins, xlim=c(22,42))                                   | 25 30 35 40                    |
|                                                                        | jj                             |



# Excel 및 R : 증가율



# MATHY I. Excel 증가율

#### 1. 증가율

- 자료의 빈도(연도별, 분기별, 월별)에 따라 다양한 증가율을 구할 수 있음 ·전기(년,분기,월)대비 증가율(%) : <u><sup>Y</sup>t-Yt-1</sub> \*</u> 100
  - · 전년 동분기대비 증가율(%) :  $\frac{Y_t Y_{t-4}}{Y_{t-4}} * 100$
  - · 전년 동월대비 증가율(%) :  $\frac{Y_t Y_{t-12}}{Y_{t-12}} * 100$

2. 연평균 증가율

연도별 자료의 경우 다음의 식에 의해 연평균증가율을 구함

$$\cdot$$
 연평균 증가율(%):  $((rac{Y_t}{Y_1})^{\left(rac{1}{n}
ight)}-1)*100$ 

단, Y<sub>t</sub>는 최종연도의 값, Y<sub>1</sub>은 최초연도의 값, n은 경과기간을 나타냄

- (예) 우리나라 연도별 및 분기별 GDP를 나타내는 gdp.xlsx로 각종 증가율을 계산해 보라
  - · <u>http://kanggc.iptime.org/book/data/gdp.xlsx</u>로 파일을 다운로드

|    | Α    | В            | С | D | E | F | G | Н        |            | J | K |
|----|------|--------------|---|---|---|---|---|----------|------------|---|---|
| 1  | 연도   | GDP          |   |   |   |   |   | 분기       | GDP        |   |   |
| 2  | 2000 | 820,843.80   |   |   |   |   |   | 2013 1/4 | 324,349.80 |   |   |
| 3  | 2001 | 857,989.50   |   |   |   |   |   | 2013 2/4 | 345,582.70 |   |   |
| 4  | 2002 | 921,759.00   |   |   |   |   |   | 2013 3/4 | 346,151.60 |   |   |
| 5  | 2003 | 948,796.20   |   |   |   |   |   | 2013 4/4 | 364,748.50 |   |   |
| 6  | 2004 | 995,285.70   |   |   |   |   |   | 2014 1/4 | 336,942.20 |   |   |
| 7  | 2005 | 1,034,337.50 |   |   |   |   |   | 2014 2/4 | 357,542.50 |   |   |
| 8  | 2006 | 1,087,876.40 |   |   |   |   |   | 2014 3/4 | 357,743.40 |   |   |
| 9  | 2007 | 1,147,311.40 |   |   |   |   |   | 2014 4/4 | 374,744.20 |   |   |
| 10 | 2008 | 1,179,771.40 |   |   |   |   |   | 2015 1/4 | 345,667.10 |   |   |
| 11 | 2009 | 1,188,118.40 |   |   |   |   |   | 2015 2/4 | 366,027.80 |   |   |
| 12 | 2010 | 1,265,308.00 |   |   |   |   |   | 2015 3/4 | 368,477.20 |   |   |
| 13 | 2011 | 1,311,892.70 |   |   |   |   |   | 2015 4/4 | 386,616.10 |   |   |
| 14 | 2012 | 1,341,966.50 |   |   |   |   |   | 2016 1/4 | 356,000.90 |   |   |
| 15 | 2013 | 1,380,832.60 |   |   |   |   |   | 2016 2/4 | 378,925.80 |   |   |
| 16 | 2014 | 1,426,972.40 |   |   |   |   |   | 2016 3/4 | 378,324.30 |   |   |
| 17 | 2015 | 1,466,788.30 |   |   |   |   |   | 2016 4/4 | 396,504.10 |   |   |
| 18 | 2016 | 1,509,755.00 |   |   |   |   |   | 2017 1/4 | 366,227.30 |   |   |
| 19 | 2017 | 1,555,995.30 |   |   |   |   |   | 2017 2/4 | 389,589.40 |   |   |
| 20 |      |              |   |   |   |   |   | 2017 3/4 | 392,611.50 |   |   |
| 21 |      |              |   |   |   |   |   | 2017 4/4 | 407,567.00 |   |   |
| 22 |      |              |   |   |   |   |   |          |            |   |   |

#### (1)전년대비 증가율

- · C3셀에 =(B3-B2)/B2\*100을 입력하여 전년대비 증가율을 구함
- · C3을 블록으로 선택하고 블록으로 선택된 영역의 오른쪽 맨 아래로 마우스 포인터를 이동하여 C19까지 마우스를 끌어서 클릭하여 복사

(2)전년대비 증가율의 근사치

- 변수에 자연로그를 취하여 변환하고 로그로 변환된 변수의 차분변수를 구함
- · D2셀에 =ln(b2)를 입력하여 GDP의 로그 값 즉, ln(GDP)을 구함
- · E3셀부터 E19셀까지 In(GDP)의 1차 시차변수를 만듦
- · F3셀에 =(D3-E3)\*100을 입력하여 ln(GDP)의 1차 차분 값에 100을 곱한 값을 계산
- · C3:C19셀의 전년대비 증가율과 F3:F19의 전년대비 증가율의 근사치를 비교해 보면 아래 그림과 같이 아주 유사함을 할 수 있음



#### (3)연평균 증가율

- · C20셀에 =average(C3:C19)를 입력하면 2000년부터 2017년까지 연평균증가율을 계산할 수 있는데 이 값은 산술평균으로 구한 값으로 3.846%임
- · B20셀에 =((B19/B2)^(1/17)-1)\*100을 입력하면 2000년부터 2017년까지 연평균증가율을 계산할 수 있 는데 이 값은 기하평균으로 구한 값으로 3.833%이며 이 값이 산술평균보다 더 정확함

(4)전년 동기대비 증가율

- 전년 동기대비 증가율은 연도별 자료일 경우 전년대비, 분기별 자료일 경우 전년 동분기대비, 월별자료일 경우 전년 동월대비라고 함
- · J6셀에 =(I6-I2)/I2\*100을 입력하여 전년 동기(분기)대비 증가율을 구함
- · J6을 블록으로 선택하고 블록으로 선택된 영역의 오른쪽 맨 아래로 마우스 포인터를 이동하여 J21까지 마우스를 끌어서 클릭하여 복사

# 1. 시차변수

- 주어진 시계열이 (t=2000,2001,...,2017)이라고 할 때 시차가 k인 시차 변수는 다음과 같음

| 관측치     | $X_t$ | X <sub>t-1</sub> | $X_{t-2}$ | X <sub>t-3</sub> |   |   | $X_{t-k}$ |
|---------|-------|------------------|-----------|------------------|---|---|-----------|
| 1(2000) | $X_1$ | -                | -         | -                | - | - | -         |
| 2(2001) | $X_2$ | $X_1$            | _         | -                | - | _ | -         |
| 3(2002) | $X_3$ | $X_2$            | $X_1$     | -                | - | _ | -         |
| 4(2003) | $X_1$ | $X_3$            | $X_2$     | $X_1$            | _ | _ | _         |
|         | •     | •                | •         |                  | • | • | -         |
| k       | $X_k$ | •                | •         | •                | • | • | -         |
|         | •     | $X_k$            | •         | •                | • | • | X1        |
|         | •     | •                | $X_k$     |                  |   | • |           |
|         |       |                  | •         | $X_k$            |   | • |           |
| •       | •     | •                | •         | •                | • | • | •         |
| n(2017) | $X_n$ | $X_{n-1}$        | $X_{n-2}$ | $X_{n-3}$        |   | • | $X_{n-k}$ |

# 2. 증가율 및 연평균 증가율











### 1. 기여율

- 기여율은 전체변동분에 대한 요인별 변동분의 비율로 나타냄
- 국민소득을 예를 들어 설명해 보면, 국내총생산을 Y, 국내총생산의 구성요소(예를 들면, 민간소비, 고정투 자, 수출 등)를 X<sub>i</sub>라고 할 때 각 구성요소의 국내총생산에 대한 기여율은 다음과 같이 계산

· Y에 대한 X<sub>i</sub>의 기여율(%) = <u>X<sub>i</sub>의 증감액</u> ∗ 100

#### 2. 기여도

- 기여도란 어떤 변수(예를 들어 GDP)의 변동에 대하여 그 변수를 구성하고 있는 각각의 요인(예를 들면, 민간소비, 고정투자, 수출 등)들이 어느 만큼의 영향을 주고 있는 지를 나타냄
- 기여율에 통계치의 증감률을 곱하면 기여도가 됨
  - · Y의 변동률에 대한 X<sub>i</sub>의 기여도(%) = Y의 변동률 \* Y에 대한 X<sub>i</sub>의 기여율/100
- (예 1) 2011-2017년도 지출측면에서 본 국내총생산(gdpexp.xlsx)인데 이를 이용하여 지출항목별 상승기 여율 및 상승기여도를 계산해 보라
  - ·<u>http://kanggc.iptime.org/book/data/gdpexp.xlsx</u>로 파일을 다운로드

### (1)상승기여율

- · 먼저 총소비의 기여율을 계산하기 위해서 C12에 식 =((C3-C2)/(\$B3-\$B2))\*100을 입력
- · 다른 항목들의 기여율을 계산하기 위해서 C12를 블록으로 선택하고 블록으로 선택된 영역의 오른쪽 맨 아래로 마우스 포인터를 이동하여 H12까지 마우스를 끌어서 클릭하여 복사
- ·B12에 =C12+D12+E12+F12-G12+H12를 입력
- · B12부터 H12까지 블록으로 선택하고 블록으로 선택된 영역의 오른쪽 맨 아래로 마우스 포인터를 이동하 여 B17부터 H17까지 마우스를 끌어서 클릭하여 복사하면 지출항목별로 상승기여율을 계산

(2)상승기여도

- · 먼저 2012년도의 국내총생산의 증가율을 계산하기 위해서 B21에 식 =(B3-B2)/B2\*100을 입력
- · 총소비의 기여도를 계산하기 위해서 C21에 식 =\$B21\*C12/100을 입력
- · 다른 항목들의 기여도를 계산하기 위해서 C21을 블록으로 선택하고 블록으로 선택된 영역의 오른쪽 맨 아래로 마우스 포인터를 이동하여 H21까지 마우스를 끌어서 클릭하여 복사
- ·계산 결과를 확인하기 위하여 I21에 =C21+D21+E2+F21-G21+H21을 입력
- · B21부터 I21까지 블록으로 선택하고 블록으로 선택된 영역의 오른쪽 맨 아래로 마우스 포인터를 이동하 여 B26부터 I26까지 마우스를 끌어서 클릭하여 복사하면 지출항목별로 기여도를 계산

|    | A    | B         | С        | D        | E        | F        | G        | н        | - I      |
|----|------|-----------|----------|----------|----------|----------|----------|----------|----------|
| 1  | 연도   | 국내총생산     | 소비       | 투자       | 정부지출     | 수출       | 수입       | 불일치      |          |
| 2  | 2011 | 1,311,893 | 655,181  | 419,283  | 187,158  | 719,943  | 668,932  | -741     |          |
| 3  | 2012 | 1,341,967 | 667,781  | 409,640  | 193,474  | 756,558  | 685,009  | -477     |          |
| 4  | 2013 | 1,380,833 | 680,350  | 409,154  | 199,783  | 788,788  | 696,725  | -518     |          |
| 5  | 2014 | 1,426,972 | 692,236  | 430,686  | 205,869  | 804,797  | 706,938  | 323      |          |
| 6  | 2015 | 1,466,788 | 707,493  | 462,114  | 212,022  | 803,746  | 721,740  | 3,154    |          |
| 7  | 2016 | 1,509,755 | 725,362  | 488,040  | 221,514  | 824,330  | 755,861  | 6,370    |          |
| 8  | 2017 | 1,555,995 | 744,284  | 537,370  | 229,101  | 840,020  | 808,986  | 14,206   |          |
| 9  |      |           |          |          |          |          |          |          |          |
| 10 |      |           |          | 상승기여율    |          |          |          |          |          |
| 11 |      | 국내총생산     | 소비       | 투자       | 정부지출     | 수술       | 수입       | 불일치      |          |
| 12 | 2012 | 100       | 41.89727 | -32,0638 | 20,99934 | 121.7512 | 53,46148 | 0.877508 |          |
| 13 | 2013 | 100       | 32,33744 | -1,2507  | 16,23497 | 82,92471 | 30,14246 | -0,10395 |          |
| 14 | 2014 | 100       | 25,76192 | 46,66622 | 13,18991 | 34,69694 | 22,13664 | 1,821638 |          |
| 15 | 2015 | 100       | 38,31811 | 78,9353  | 15,45212 | -2,63965 | 37,1761  | 7,110225 |          |
| 16 | 2016 | 100       | 41,58942 | 60,33882 | 22,09292 | 47,90663 | 79,41173 | 7,483935 |          |
| 17 | 2017 | 100       | 40,92123 | 106,6821 | 16,40668 | 33,93122 | 114,8879 | 16,94669 |          |
| 18 |      |           |          |          |          |          |          |          |          |
| 19 |      |           |          | 상승기여도    |          |          |          |          |          |
| 20 |      | 국내총생산     | 소비       | 투자       | 정부지출     | 수술       | 수입       | 불일치      | 확인       |
| 21 | 2012 | 2.2923978 | 0,960452 | -0,73503 | 0.481388 | 2,791021 | 1,22555  | 0.020116 | 2,292398 |
| 22 | 2013 | 2,8962049 | 0,936558 | -0.03622 | 0,470198 | 2,401669 | 0.872988 | -0.00301 | 2,896205 |
| 23 | 2014 | 3,3414478 | 0,860821 | 1,559327 | 0.440734 | 1,15938  | 0,739684 | 0,060869 | 3,341448 |
| 24 | 2015 | 2.7902362 | 1,069166 | 2,202481 | 0.431151 | -0.07365 | 1.037301 | 0,198392 | 2.790236 |
| 25 | 2016 | 2,9293048 | 1,218281 | 1,767508 | 0.647169 | 1,403331 | 2,326212 | 0,219227 | 2,929305 |
| 26 | 2017 | 3.0627685 | 1.253323 | 3,267424 | 0.502499 | 1,039235 | 3,51875  | 0.519038 | 3.062768 |

# J 제쥬때함굚 Ⅱ. R 기여율 및 기여도

### 1. looping

- looping은 하나의 프로그램 내에서 명령문의 일부를 되풀이하여 실행하는 것을 말하는데 repeat, for, while 명령문이 looping에 사용됨
- for 명령문을 이용하여 구구단 표를 만드는 프로그램과 실행 결과는 다음과 같음



에 제주대학교 JEJU NATIONAL UNIVERSITY

# 2. 기여율 및 기여도

| b3-ch4-8.R                                                             |     |                |                  |                   |                |                |                 |                        |                       |
|------------------------------------------------------------------------|-----|----------------|------------------|-------------------|----------------|----------------|-----------------|------------------------|-----------------------|
| library(openxlsx)                                                      |     |                |                  |                   |                |                |                 |                        |                       |
| sample1<-read.xlsx("http://kanggc.iptime.org/book/data/gdpexp-e.xlsx") |     |                |                  |                   |                |                |                 |                        |                       |
| y<-ts(sample1\$gdp, start=2011, end=2017, frequency=1)                 |     | > z1           |                  |                   |                |                |                 |                        |                       |
| c<-ts(sample1\$cons, start=2011, end=2017, frequency=1)                |     | F4 1           | [,1]             | [,2]              | [,3]           | [,4]           | [,5] [          | ,6]                    |                       |
| i<-ts(sample1\$inv, start=2011, end=2017, frequency=1)                 |     | [2,]           | NA               | NA                | NA             | NA             | NA              | NA                     |                       |
| g<-ts(sample1\$gov, start=2011, end=2017, frequency=1)                 |     | [3,]           | NA<br>NA         | NA<br>NA          | NA<br>NA       | NA<br>NA       | NA<br>NA        | NA<br>NA               |                       |
| x<-ts(sample1\$ex, start=2011, end=2017, frequency=1)                  |     | [5,]           | NA               | NA                | NA             | NA             | NA              | NA                     |                       |
| m<-ts(sample1\$im, start=2011, end=2017, frequency=1)                  |     | [6,]           | NA               | NA                | NA             | NA             | NA              | NA                     |                       |
| d<-ts(sample1\$discrep, start=2011, end=2017, frequency=1)             |     |                |                  |                   |                |                |                 |                        |                       |
| z0<-as.matrix(cbind(y,c,i,g,x,m,d))                                    |     |                |                  |                   |                |                |                 |                        |                       |
| zO                                                                     | > ( | z1<-r          | ound (           | z1, dig           | its=4          | ))             | -               |                        | 1 5 61                |
| z1<-matrix(data=NA, nrow=6, ncol=6, byrow=T)                           | [1, | ] 41.          | [,1]<br>8973 ·   | L,2<br>32.063-    | J<br>8 20.     | [,3]<br>9993   | 121.75          | 4] [,5<br>12 53.461    | 5 0.8775              |
| z1                                                                     | [2, | ] 32.<br>1 25. | 3374<br>7619     | -1.250            | 7 16.<br>2 13. | 2350<br>1899   | 82.924<br>34.69 | 47 30.142<br>59 22.136 | 5 -0.1039<br>6 1.8216 |
| for(i in 1:6) {                                                        | [4, | ] 38.          | 3181             | 78.935            | 3 15.          | 4521           | -2.63           | 96 37.176              | 1 7.1102              |
| for(j in 1:6) {                                                        | [6, | ] 41.<br>] 40. | 9212 :           | 106.682           | 1 16.          | 4067           | 33.93           | 12 114.887             | 9 16.9467             |
| z1[i,j]<-((z0[i+1,j+1]-z0[i,j+1])/(z0[i+1,1]-z0[i,1]))*100             |     |                |                  |                   |                |                |                 |                        |                       |
| }                                                                      |     |                |                  |                   |                |                |                 |                        |                       |
| }                                                                      |     |                |                  |                   |                |                |                 |                        |                       |
| (z1<-round(z1, digits=4))                                              | >   | (z2∢           | -rour            | nd(z2,            | digi           | ts=4)          | )               | 47 5 57                | F 61                  |
| z2<-matrix(data=NA, nrow=6, ncol=6, byrow=T)                           | [   | 1,] (          | L,1<br>).9609    | l L,<br>5 -0.73   | 2J<br>50 0     | [,3]<br>.4814  | 2.79            | 4] [,3]<br>10 1.2256   | 0.0201                |
| for(i in 1:6) {                                                        |     | 2,] (          | ).9360<br>).8608 | 5 -0.03<br>8 1.55 | 62 0           | .4702          | 2.40            | 17 0.8730<br>94 0.7397 | -0.0030               |
| for(j in 1:6) {                                                        | ļ   | 4,] 1          | .0692            | 2 2.20            | 25 0           | .4312          | -0.07           | 37 1.0373              | 0.1984                |
| z2[i,j]<-(z0[i+1,1]-z0[i,1])/(z0[i,1])*z1[i,j]                         |     | 5,]]<br>[6,]]  | L.2183           | 3 1.76<br>3 3.26  | 75 0<br>74 0   | .6472<br>.5025 | 1.40            | 33 2.3262<br>92 3.5188 | 0.2192<br>0.5190      |
| }                                                                      |     |                |                  |                   |                |                |                 |                        |                       |
|                                                                        |     |                |                  |                   |                |                |                 |                        |                       |
| (z2<-round(z2, digits=4))                                              |     |                |                  |                   |                |                |                 |                        |                       |





# 🦓 제조대학교 I. Excel 기여율 및 기여도

- 산업생산지수나 소비자물가지수 등과 같이 지수로 측정된 자료로 상승기여율과 기여도를 구할 수 있음
- 총합지수의 상승에 어떤 업종이 어느 정도 영향을 주는 가에 대한 구성비를 계산한 것이 상승기여율
- 상승기여율에 따라 총합상승률을 각 업종별이나 품목별로 배분한 것을 기여도라고 함
  - ·기여율=(개별구성요소의 증감액/총합의 증감액)x100
  - ·기여도=(총합의 변동률x총합에 대한 개별구성요소의 기여율)/100
- (예 1) 다음의 표와 같이 개별지수와 총합지수 및 가중치가 주어졌을 경우 위의 식을 이용하여 철강, 정밀 기계, 요업의 상승기여율과 기여도를 계산해 보라 🚽 🗛 👘 🕫 👘 🕞 🕞

|   | A     | D     | U U   | U     |
|---|-------|-------|-------|-------|
| 1 | 업종    | 가중치   | 전년    | 당해년   |
| 2 |       | W     | A     | В     |
| 3 | 총합    | 100,0 | 106.0 | 112,8 |
| 4 | -철강   | 50,0  | 104.0 | 110,0 |
| 5 | -정밀기계 | 30,0  | 120.0 | 128,0 |
| 6 | -요업   | 20,0  | 90,0  | 97,0  |
|   |       |       |       |       |

(1)상승기여율

- · E3셀에 =D3-C3을 입력하여 총합의 포인트차를 구하고, 이 셀을 E4셀부터 E6셀까지 복사하여 업종별 포 인트차를 구함
- · F3셀에 =E3\*B3을 입력하여 총합의 포인트차×가중치를 구하고, 이 셀을 E4셀부터 E6셀까지 복사하여 업 종별 포인트차×가중치를 구함
- · G4셀에 =F4/F\$3\*100을 입력하여 철강의 상승기여율을 구하고, 이 셀을 G5셀부터 G6셀까지 복사하여 정밀기계 및 요업의 상승기여율을 각각 계산
- ·G3셀에 =sum(G4:G6)을 입력하여 상승기여율의 합이 100이 되는지 확인

(2)상승기여도

- · I3셀에 =(D3-C3)/C3\*100을 입력하여 총합의 상승률을 구하고, 이 셀을 I4셀부터 I6셀까지 복사하여 업종 별 상승률을 구함.
- · H4셀에 =(I\$3\*G4)/100을 입력하여 철강의 기여도를 구하고, 이 셀을 H5셀부터 H6셀까지 복사하여 정밀 기계 및 요업의 기여도를 각각 계산
- · H3셀에 =sum(H4:H6)을 입력하여 기여도의 합이 총합의 상승률이 되는지 확인

- (예 2) 아래 그림에 나타나 있는 지출목적별 소비자물가지수에 관한 자료(2015-2017)(cpi.xlsx)를 이용하 여 상승기여율과 상승기여도를 계산해 보라
  - · <u>http://kanggc.iptime.org/book/data/cpi.xlsx</u>로 파일을 다운로드

#### (1)상승기여율

- · 먼저 식료품의 기여율을 계산하기 위해서 D19에 다음의 식을 입력
  - =((D3-C3)\*\$B3)/((D\$2-C\$2)\*\$B\$2)\*100
- · D19를 선택하고 선택된 영역의 오른쪽 맨 아래로 마우스 포인 터를 이동하여 E19까지 마우스를 끌어서 클릭하여 복사
- · D19부터 E19까지 블록으로 선택하고 블록으로 선택된 영역의 오른쪽 맨 아래로 마우스 포인터를 이동하여 D30부터 E30까지 마우스를 끌어서 클릭하여 복사하면 지출목적별로 상승기여율을 계산

· D18에 =sum(D19:D30)을 구하여 확인해 보고 E18까지 복사 (2)상승기여도

· 먼저 2016년도의 총지수의 증가율을 계산하기 위해서 D34에 식

=(D2-C2)/C2\*100을 입력

- ·나머지 연도의 증가율을 계산하기 위해서 D34를 블록으로 선택하여 E34까지 복사
- · 식료품의 기여도를 계산하기 위해서 D35에 식 =D\$34\*D19/100을 입력
- · 다른 항목들의 기여도를 계산하기 위해서 D35를 선택하고 선택된 영역의 오른쪽 맨 아래로 마우스 포인 터를 이동하여 E35까지 마우스를 끌어서 클릭하여 복사
- · D35부터 E35까지 블록으로 선택하고 블록으로 선택된 영역의 오른쪽 맨 아래로 마우스 포인터를 이동하 여 D46부터 E46까지 마우스를 끌어서 클릭하여 복사하면 지출항목별로 기여도를 계산
- · D47에 = sum(D35:D46)을 구하여 확인해 보고 E47까지 복사

| 4  | A                | B      | C      | D      | E      |
|----|------------------|--------|--------|--------|--------|
| 1  | 구분               | 가중치    | 2015   | 2016   | 2017   |
| 2  | 충지수              | 1000.0 | 100.00 | 100.97 | 102.93 |
| 3  | 01 식료품 · 비주류용료   | 137.7  | 100.00 | 102.31 | 105.78 |
| 4  | 02 주류 및 담배       | 15.5   | 100.00 | 100.69 | 102.20 |
| 5  | 03 의류 및 신발       | 61.4   | 100.00 | 101.80 | 102.90 |
| 6  | 04 주택·수도·전기 및 연료 | 170.2  | 100.00 | 99.19  | 100.87 |
| 7  | 05 가정용품 및 가사 서비스 | 41.7   | 100.00 | 101.55 | 102.67 |
| 8  | 06 보건            | 68.7   | 100.00 | 100.99 | 101.88 |
| 9  | 07 교통            | 111.0  | 100.00 | 97.79  | 101.29 |
| 10 | 08 통신            | 54.8   | 100.00 | 100.09 | 100.38 |
| 11 | 09 오락 및 문화       | 57.2   | 100.00 | 101.84 | 101.90 |
| 12 | 10 교육            | 97.0   | 100.00 | 101.64 | 102.80 |
| 13 | 11 음식 및 숙박       | 129.4  | 100.00 | 102.51 | 104.97 |
| 14 | 12 기타 상품 및 서비스   | 55.4   | 100.00 | 103.44 | 106.31 |

b3-ch4-9-rev.R

#### library(openxlsx)

sample1<-read.xlsx("http://kanggc.iptime.org/book/data/cpi-e.xlsx") weight<-read.xlsx("http://kanggc.iptime.org/book/data/cpi-weight-e.xlsx") all<-ts(sample1\$all, start=2015, end=2017, frequency=1);fo<-ts(sample1\$food, start=2015, end=2017, frequency=1) al<-ts(sample1\$alcohol, start=2015, end=2017, frequency=1);cl<-ts(sample1\$clothing, start=2015, end=2017, frequency=1) ho<-ts(sample1\$housing, start=2015, end=2017, frequency=1);hou<-ts(sample1\$household, start=2015, end=2017, frequency=1) he<-ts(sample1\$health, start=2015, end=2017, frequency=1);tr<-ts(sample1\$transport, start=2015, end=2017, frequency=1) co<-ts(sample1\$communication, start=2015, end=2017, frequency=1);re<-ts(sample1\$recreation, start=2015, end=2017, frequency=1) ed<-ts(sample1\$education, start=2015, end=2017, frequency=1);res<-ts(sample1\$restaurant, start=2015, end=2017, frequency=1) ot<-ts(sample1\$others, start=2015, end=2017, frequency=1) w1<-weight[1,2];w2<-weight[2,2];w3<-weight[3,2];w4<-weight[4,2];w5<-weight[5,2];w6<-weight[6,2];w7<-weight[7,2] w8<-weight[8,2];w9<-weight[9,2];w10<-weight[10,2];w11<-weight[11,2];w12<-weight[12,2];w13<-weight[13,2] z0<-as.matrix(cbind(all.fo.al,cl,ho,hou,he,tr,co,re,ed,res,ot));z0;z1<-matrix(data=NA, nrow=2, ncol=12, byrow=T) w<-as.matrix(cbind(w1.w2.w3.w4.w5.w6.w7.w8.w9.w10.w11.w12.w13)) for(i in 1:2) { for(j in 1:12) {  $z_1[i,i] < -(((z_0[i+1,i+1]-z_0[i,i+1])*w[i+1])/((z_0[i+1,1]-z_0[i,1])*w_1))*100; };$  $(z_1 < -round(z_1, diait_s = 4))$ rowSums(z1)) z2<-matrix(data=NA, nrow=2, ncol=12, byrow=T) > (z1<-round(z1, digits=4))</p> [,6] for(i in 1:2) { [,5] [,4] [,7] [,8] [1,] 32.7925 1.1026 11.3938 -14.2126 6.6634 7.0116 -25.2897 0.5085 10.8503 [2.] 24.3785 1.1941 2.3829 3.1195 19.8214 0.8108 14.5886 0.1751 5.7408 16.2410 for(j in 1:12) { z2[i,j]<-(z0[i+1,1]-z0[i,1])/(z0[i,1])\*z1[i,j]; }; (z2 < -round(z2, digits = 4))> (z2<-round(z2, digits=4))</pre> rowSums(z2)) .6] .5

0646

0.2832 0.0463 0.0606

1379

0680

0.3848 0.0157 0.0034 0.1114 0.3153

[1,] 0.3181

[2,] 0.4732 0.0232 0.0669

8 1121





# 시 제조대학교 I. Excel 및 R 입지계수

- 1. Excel 활용 입지계수 계산
- 입지계수(Location Quotient: LQ)는 특정 지역의 산업에 대해 전국의 동일산업에 대한 상대적인 중요도 를 측정
- 특정 지역 산업의 상대적인 특화도를 나타냄
- 입지계수는 다음의 식과 같이 특정 산업 i가 지역에서 차지하는 비율과 그 산업이 전국에서 차지하는 비율
   을 비교하여 측정
  - · LQ =  $\frac{\frac{V_{ij}}{V_j}}{\frac{V_i}{V}}$
  - · 단, *V<sub>ij</sub>* : j지역 i산업의 부가가치(또는 취업자 수)

V<sub>i</sub> : j지역 전 산업의 부가가치(또는 취업자 수)

- *V<sub>i</sub>* : 전국 i산업의 부가가치(또는 취업자 수)
- V : 전국 전 산업의 부가가치(또는 취업자 수)
- 입지계수가 1보다 큰 산업은 지역에서 그 산업이 차지하는 비율이 전국의 비율보다 높다는 것으로 이는 지역의 산업이 전국에 비해 특화되었음을 의미하며, 이를 기반산업이라고 함
- 입지계수가 1보다 작은 산업의 경우 전국에 비해 특화되지 않았음을 나타내므로 비기반산업이라고 함
- 입지계수가 1인 산업의 경우 자립산업이라고 함

\_

(예 1) 통계청의 국가통계포탈(www.kosis.kr)에서 전국 및 제주지역의 2016년 산업별 사업체수 및 종사 자수 자료를 다운 받은 자료(lq.xlsx)인데 이를 이용하여 사업체수LQ 및 종사자수LQ를 계산해 보라

· <u>http://kanggc.iptime.org/book/data/lq.xlsx</u>로 파일을 다운로드

| 1  | 해정그여 | MAD                   | 2016      |            | 해전 | 829 | 사이 | 10                                                      | 2016     |          |  |  |  |
|----|------|-----------------------|-----------|------------|----|-----|----|---------------------------------------------------------|----------|----------|--|--|--|
| 2  | 8074 | 280                   | 사업체수 (개)  | 증사자수 (명)   |    | 574 |    | 10                                                      | 사업체수 (개) | 증사자수 (명) |  |  |  |
| 3  | 전 국  | 전체산업                  | 3,950,192 | 21,259,243 | 23 | 제 주 |    | 전체산업                                                    | 57,791   | 258,188  |  |  |  |
| 4  |      | 1.농업,임업밎어업            | 3,638     | 39,741     | 24 |     | 1  | 1.농업,임업밎어업                                              | 386      | 3,066    |  |  |  |
| 5  |      | 2.광업                  | 2,006     | 15,739     | 25 |     | t  | 2 광업                                                    | 15       | 210      |  |  |  |
| 6  |      | 3.제조업                 | 416,493   | 4,045,121  | 26 |     | ł  | 3 제조업                                                   | 2 208    | 11.071   |  |  |  |
| 7  |      | 4.전기,가스,증기밎수도사업       | 2,129     | 77,381     | 27 |     | ł  | * 저기 가스 즐기면수도 내어                                        | 2,200    | 1 1 2 0  |  |  |  |
| 8  |      | 5.하수·폐기물처리,원료재생및환경복원업 | 7,945     | 85,391     | 2/ |     | ł  | 4.연기,가구,당기 못구조가 답<br>동 한 사, 데 가 이 친구 이 가 제시 미 한 거 날 이 어 | 55       | 1,156    |  |  |  |
| 9  |      | 6.건설업                 | 136,074   | 1,381,454  | 28 |     | ł  | 5.야구ㆍ페기울시디,원료세성벚완성복원입                                   | 100      | 953      |  |  |  |
| 10 |      | 7.도매및소매업              | 1,019,388 | 3,147,606  | 29 |     | ł  | 6.건설업                                                   | 2,544    | 22,378   |  |  |  |
| 11 | 1    | 8.운수업                 | 385,837   | 1,109,949  | 30 |     | -  | 7.도매및소매업                                                | 14,114   | 41,727   |  |  |  |
| 12 |      | 9.숙박및음식점업             | 729,395   | 2,165,772  | 31 |     | ļ  | 8.운수업                                                   | 5,761    | 14,267   |  |  |  |
| 13 |      | 10.출판.영상.방송통신및정보서비스업  | 42,472    | 566,674    | 32 |     |    | 9.숙박밎음식점업                                               | 15,571   | 50,701   |  |  |  |
| 14 |      | 11.금융및보험업             | 42,710    | 725,554    | 33 |     | ļ  | 10.출판.영상,방송통신및정보서비스업                                    | 340      | 4,632    |  |  |  |
| 15 |      | 12.부동산업및임대업           | 158,882   | 568,022    | 34 |     | l  | 11.금융및보험업                                               | 664      | 8,633    |  |  |  |
| 16 |      | 13.전문,과학및기술서비스업       | 102,713   | 996,596    | 35 |     | l  | 12.부동산업및임대업                                             | 2,125    | 6,049    |  |  |  |
| 17 |      | 14.사업시설관리및사업지원서비스업    | 52,008    | 1,094,344  | 36 |     |    | 13.전문,과학및기술서비스업                                         | 1,087    | 6,676    |  |  |  |
| 18 |      | 15.공공행정,국방및사회보장행정     | 12,452    | 691,216    | 37 |     | [  | 14.사업시설관리및사업지원서비스업                                      | 1,243    | 10,673   |  |  |  |
| 19 |      | 16.교육서비스업             | 180,295   | 1,552,822  | 38 |     | [  | 15.공공행정,국방및사회보장행정                                       | 214      | 11,831   |  |  |  |
| 20 |      | 17.보건업및사회복지서비스업       | 138,319   | 1,612,816  | 39 | 1   | [  | 16.교육서비스업                                               | 2,567    | 19,335   |  |  |  |
| 21 |      | 18.예술.스포츠및여가관련서비스업    | 110,443   | 399,317    | 40 |     | Ì  | 17.보건업및사회복지서비스업                                         | 1,821    | 20,733   |  |  |  |
| 22 |      | 19.협회및단체.수리 및기타개인서비스업 | 406,993   | 983,728    | 41 |     | Ì  | 18.예술.스포츠및여가관련서비스업                                      | 1,572    | 10,769   |  |  |  |
|    |      |                       |           |            | 42 | 1   | Ì  | 19.협회및단체,수리 및기타개인서비스업                                   | 5,424    | 13,346   |  |  |  |



#### 먼저, 사업체수LQ를 계산하는 방법은 다음과 같음

- · 농업, 임업 및 어업의 사업체수LQ를 계산하기 위해서 H4에 다음의 식을 입력 =(C24/C\$23)/(C4/C\$3)을 입력한다.
- · H4를 선택하고 선택된 영역의 오른쪽 맨 아래로 마우스 포인터를 이동하여 H22까지 마우스를 끌어서 클 릭하여 복사
- 다음으로, 종사자수LQ를 계산하는 방법은 다음과 같음
- ·농업, 임업 및 어업의 종사자수LQ를 계산하기 위해서 I4에 다음의 식을 입력

=(D24/D\$23)/(D4/D\$3)을 입력한다.

· I4를 선택하고 선택된 영역의 오른쪽 맨 아래로 마우스 포인터를 이동하여 I22까지 마우스를 끌어서 클릭 하여 복사하면 아래 그림과 같음

|    | F  | G                       | Н      | 1      |  |
|----|----|-------------------------|--------|--------|--|
| 1  |    |                         |        |        |  |
| 2  |    |                         |        |        |  |
| 3  | id | 산업명                     | 사업체수LQ | 종사자수LQ |  |
| 4  | 1  | 1.농업,임업및어업              | 7.3    | 6.4    |  |
| 5  | 2  | 2.광업                    | 0.5    | 1.1    |  |
| 6  | 3  | 3.제조업                   | 0.4    | 0.2    |  |
| 7  | 4  | 4.전기,가스,증기및수도사업         | 1.1    | 1.2    |  |
| 8  | 5  | 5.하수 · 폐기물처리,원료재생및환경복원업 | 0.9    | 0.9    |  |
| 9  | 6  | 6.건설업                   | 1.3    | 1.3    |  |
| 10 | 7  | 7.도매및소매업                | 0.9    | 1.1    |  |
| 11 | 8  | 8.운수업                   | 1.0    | 1.1    |  |
| 12 | 9  | 9.숙박및음식점업               | 1.5    | 1.9    |  |
| 13 | 10 | 10.출판,영상,방송통신및정보서비스업    | 0.5    | 0.7    |  |
| 14 | 11 | 11.금융및보험업               | 1.1    | 1.0    |  |
| 15 | 12 | 12.부동산업및임대업             | 0.9    | 0.9    |  |
| 16 | 13 | 13.전문,과학및기술서비스업         | 0.7    | 0.6    |  |
| 17 | 14 | 14.사업시설관리및사업지원서비스업      | 1.6    | 0.8    |  |
| 18 | 15 | 15.공공행정,국방및사회보장행정       | 1.2    | 1.4    |  |
| 19 | 16 | 16.교육서비스업               | 1.0    | 1.0    |  |
| 20 | 17 | 17.보건업및사회복지서비스업         | 0.9    | 1.1    |  |
| 21 | 18 | 18.예술,스포츠및여가관련서비스업      | 1.0    | 2.2    |  |
| 22 | 19 | 19.협회및단체,수리 및기타개인서비스업   | 0.9    | 1.1    |  |



-

- · 앞에서 계산된 제주지역의 산업별 사업체수 및 종사자수 입지계수를 이용하여 산업을 아래 표와 같이 4가 지 유형을 구분하고 이를 앞에서 그린 포지셔닝 맵으로 그려보면 아래 그림과 같음
- 이 그림은 편의상 LQ 계수가 너무 큰 농업, 임업 및 어업을 제외하고 그렸고, 모든 산업의 id를 그리지 않 았음

| 완전특화산업    | 종사자수 입지계수 > 1 및 사업체수 입지계수 > 1 |
|-----------|-------------------------------|
| 종사자수 특화산업 | 종사자수 입지계수 > 1 및 사업체수 입지계수 < 1 |
| 사업체수 특화산업 | 종사자수 입지계수 < 1 및 사업체수 입지계수 > 1 |
| 비특화산업     | 종사자수 입지계수 < 1 및 사업체수 입지계수 < 1 |



## 2. R 활용 입지계수 계산



# 』 제조대학교 Ⅱ. Excel 및 R 지역전문화지수

- 1. Excel 활용 지역전문화지수 계산
- 지역전문화지수(Regional Specialization Index : RSI)는 지역산업의 전문화 및 집중화를 측정
- 특정 지역의 산업구조가 전국의 산업구조에 비해 어느 정도 편향되어 있는 지를 나타내는 지수
- 지역전문화지수는 다음의 식과 같이 전국 i산업의 부가가치 구성비와 특정지역 i산업의 부가가치 구성비 의 차를 지수화한 값
  - $\cdot \operatorname{RSI} = (\sum_{i=1}^{n} | \frac{E_i^j}{E^j} \frac{E_i}{E} |)/2$
  - · 단, *E<sup>j</sup> :* j지역 i산업의 부가가치
    - *E<sup>j</sup>* : j지역 총부가가치
    - *E<sub>i</sub>* : 전국 i산업의 부가가치
    - E : 전국 총부가가치
  - 지역전문화지수의 값이 클수록 특정산업의 집중정도가 높다는 것을 의미하고, 작을수록 전국의 산업구조 와 비슷하다는 것을 의미

|    | A    | В                    | С          | D           | E           | F             | G       | Н         | I.        | J          |
|----|------|----------------------|------------|-------------|-------------|---------------|---------|-----------|-----------|------------|
| 1  | id   | name                 | k1986      | k1996       | k2006       | k2016         | jj1986  | jj1996    | jj2006    | jj2016     |
| 2  | - (  | ) 합계                 | 94,101,212 | 437,391,320 | 871,001,468 | 1,490,047,123 | 833,856 | 4,324,188 | 7,836,546 | 15,469,564 |
| 3  |      | I 농림어업               | 10,951,396 | 25,181,627  | 26,063,202  | 31,664,251    | 322,378 | 1,059,902 | 1,234,623 | 1,808,435  |
| 4  |      | 2 광업                 | 1,121,735  | 1,838,086   | 2,031,892   | 2,761,750     | 792     | 19,646    | 12,611    | 24,810     |
| 5  |      | 3 제조업                | 25,936,240 | 116,479,865 | 242,670,330 | 439,064,653   | 29,464  | 122,739   | 213,474   | 519,551    |
| 6  |      | 4 전기,가스,증기및수도사업      | 2,791,457  | 7,975,431   | 18,014,986  | 39,860,019    | 13,899  | 44,910    | 195,281   | 504,769    |
| 7  |      | 5 건설업                | 5,316,258  | 39,126,004  | 55,006,504  | 85,132,577    | 50,158  | 411,334   | 633,918   | 1,757,922  |
| 8  |      | 5 도매및소매업             | 12,514,478 | 39,897,472  | 74,565,120  | 124,843,699   | 74,798  | 357,899   | 628,015   | 1,263,449  |
| 9  |      | 7 운수업                | 4,484,484  | 21,007,647  | 36,517,273  | 59,138,191    | 42,279  | 248,568   | 397,162   | 961,163    |
| 10 | )    | 3 숙박및음식점업            | 2,627,258  | 12,721,518  | 23,562,984  | 41,035,758    | 24,814  | 297,117   | 456,672   | 1,031,414  |
| 11 |      | 출판,영상, 방송통신 및 정보서비스업 | 2,565,906  | 15,872,407  | 40,527,711  | 56,649,470    | 18,277  | 115,745   | 205,336   | 588,257    |
| 12 | 2 1  | 금융및보험업               | 3,969,325  | 27,063,817  | 55,871,145  | 81,117,774    | 24,464  | 250,287   | 505,525   | 698,313    |
| 13 | 8 1  | 부동산업및임대업             | 4,880,372  | 38,519,650  | 75,167,732  | 118,214,996   | 45,033  | 379,420   | 728,818   | 1,243,821  |
| 14 | 1    | 2 사업서비스업             | 2,839,936  | 21,915,628  | 54,546,356  | 110,700,987   | 10,276  | 61,452    | 212,666   | 608,620    |
| 15 | 5 1  | 3 공공행정,국방및사회보장행정     | 5,848,783  | 25,768,161  | 60,170,028  | 107,963,472   | 70,580  | 390,063   | 986,471   | 1,888,696  |
| 16 | 5 14 | 4 교육서비스업             | 4,310,779  | 21,239,840  | 50,097,626  | 77,640,691    | 59,744  | 264,653   | 610,528   | 986,147    |
| 17 | 1    | 5 보건업및사회복지서비스업       | 1,659,987  | 10,001,912  | 29,554,148  | 68,196,649    | 15,694  | 118,070   | 367,653   | 779,817    |
| 18 | 3 1  | 5 문화 및 기타서비스업        | 2,282,818  | 12,782,255  | 26,634,431  | 46,062,186    | 31,206  | 182,383   | 447,793   | 804,380    |



- (예 2) 전국 및 제주의 산업별-10년 단위별 부가가치에 관한 자료(rsi-jj.xlsx)를 이용하여 지역전문화지수 를 계산해 보라
- · <u>http://kanggc.iptime.org/book/data/rsi-jj.xlsx</u>로 파일을 다운로드
- · 먼저 1986년 RSI를 계산하기 위해 K3에 다음의 식을 입력

=ABS((G3/G\$2)-(C3/C\$2))

- · 다른 연도를 계산하기 위하여 K3을 선택하고 선택된 영역의 오른쪽 맨 아래로 마우스 포인터를 이동하여 N3까지 마우스를 끌어서 클릭하여 복사
- · K3부터 N3까지 블록으로 선택하고 블록으로 선택된 영역의 오른쪽 맨 아래로 마우스 포인터를 이동하여 K18부터 N18까지 마우스를 끌어서 클릭하여 복사하면 전국 i산업의 부가가치 구성비와 제주지역 i산업의 부가가치 구성비의 차이를 계산
- K2에 =sum(K3:K18)/2를 구하여 확인해 보고 N2까지 복사하면 아래 그림과 같이 10년 단위별 제주지역 RSI를 계산해 주는데 1986년 0.343589에서 2016년 0.30769로 하락하였는데 이는 특정산업(예를 들면, 농림어업)의 집중정도가 낮아지고 있음을 의미

|    | Α  | В                    | K        | L        | М        | N        |
|----|----|----------------------|----------|----------|----------|----------|
| 1  | id | name                 | rsi1986  | rsi1996  | jj2006   | jj2016   |
| 2  | 0  | 합계                   | 0.343589 | 0.303954 | 0.313377 | 0.30769  |
| 3  | 1  | 농림어업                 | 0.270232 | 0.187538 | 0.127624 | 0.095652 |
| 4  | 2  | 광업                   | 0.010971 | 0.000341 | 0.000724 | 0.00025  |
| 5  | 3  | 제조업                  | 0.240286 | 0.237922 | 0.25137  | 0.26108  |
| 6  | 4  | 전기,가스,증기밎수도사업        | 0.012996 | 0.007848 | 0.004236 | 0.005879 |
| 7  | 5  | 건설업                  | 0.003657 | 0.005671 | 0.017739 | 0.056503 |
| 8  | 6  | 도매및소매업               | 0.043288 | 0.00845  | 0.005469 | 0.002112 |
| 9  | 7  | 운수업                  | 0.003047 | 0.009454 | 0.008755 | 0.022444 |
| 10 | 8  | 숙박및음식점업              | 0.001839 | 0.039625 | 0.031222 | 0.039134 |
| 11 | 9  | 출판,영상, 방송통신 및 정보서비스업 | 0.005349 | 0.009522 | 0.020328 | 8.16E-06 |
| 12 | 10 | 금융및보험업               | 0.012843 | 0.003995 | 0.000363 | 0.009299 |
| 13 | 11 | 부동산업및임대업             | 0.002143 | 0.000323 | 0.006702 | 0.001068 |
| 14 | 12 | 사업서비스업               | 0.017856 | 0.035894 | 0.035487 | 0.034951 |
| 15 | 13 | 공공행정,국방및사회보장행정       | 0.022489 | 0.031292 | 0.056799 | 0.049635 |
| 16 | 14 | 교육서비스업               | 0.025838 | 0.012643 | 0.020391 | 0.011641 |
| 17 | 15 | 보건업및사회복지서비스업         | 0.001181 | 0.004437 | 0.012984 | 0.004642 |
| 18 | 16 | 문화 및 기타서비스업          | 0.013165 | 0.012954 | 0.026563 | 0.021084 |

# 2. R 활용 지역전문화지수 계산

b3-ch4-11.R library(openxlsx) data<-read.xlsx("http://kanggc.iptime.org/book/data/rsi-jj-e.xlsx") id<-data\$id name<-data\$name k1986<-data\$k1986;k1996<-data\$k1996 k2006<-data\$k2006;k2016<-data\$k2016 jj1986<-data\$jj1986;jj1996<-data\$jj1996 jj2006<-data\$jj2006;jj2016<-data\$jj2016 B<-matrix(data=NA, nrow=16, ncol=4, byrow=T) for(i in 1:16) { for(j in 1:4) { B[i,1]<-abs((jj1986[i+1]/jj1986[1])-(k1986[i+1]/k1986[1])) B[i,2]<-abs((jj1996[i+1]/jj1996[1])-(k1996[i+1]/k1996[1])) B[i,3]<-abs((jj2006[i+1]/jj2006[1])-(k2006[i+1]/k2006[1])) B[i,4]<-abs((jj2016[i+1]/jj2016[1])-(k2016[i+1]/k2016[1])) } } BB<-round(B,digits=3) ΒB RSI<-colSums(B)/2 RSI-뒤에 계속

|   | > BB  |       |       |       |       |
|---|-------|-------|-------|-------|-------|
|   |       | [,1]  | [,2]  | [,3]  | [,4]  |
|   | [1,]  | 0.270 | 0.188 | 0.128 | 0.096 |
|   | [2,]  | 0.011 | 0.000 | 0.001 | 0.000 |
|   | [3,]  | 0.240 | 0.238 | 0.251 | 0.261 |
|   | [4,]  | 0.013 | 0.008 | 0.004 | 0.006 |
|   | [5,]  | 0.004 | 0.006 | 0.018 | 0.057 |
|   | [6,]  | 0.043 | 0.008 | 0.005 | 0.002 |
|   | [7,]  | 0.003 | 0.009 | 0.009 | 0.022 |
| 1 | [8,]  | 0.002 | 0.040 | 0.031 | 0.039 |
|   | [9,]  | 0.005 | 0.010 | 0.020 | 0.000 |
|   | [10,] | 0.013 | 0.004 | 0.000 | 0.009 |
|   | [11,] | 0.002 | 0.000 | 0.007 | 0.001 |
|   | [12,] | 0.018 | 0.036 | 0.035 | 0.035 |
|   | [13,] | 0.022 | 0.031 | 0.057 | 0.050 |
|   | [14,] | 0.026 | 0.013 | 0.020 | 0.012 |
|   | [15,] | 0.001 | 0.004 | 0.013 | 0.005 |
|   | [16,] | 0.013 | 0.013 | 0.027 | 0.021 |
|   |       |       |       |       |       |

> RSI [1] 0.3435891 0.3039540 0.3133775 0.3076903





# / 제주대학교 I. Excel 지방전문화곡선

- · 산업별 비중을 구하고 산업구성비를 크기 순으로 정렬한 후 누적률을 그린 것을 지방전문화곡선 (localization curve)이라고 함(교재 p.159부터 시작)
- 45°선에서 좌측 상방으로 멀어질수록 전문화되고 있다는 것을 의미
- (예) 전국 및 제주의 산업별-10년 단위별 부가가치에 관한 자료(rsi-jj.xlsx)로 지방전문화곡선을 그려보라
  - ·<u>http://kanggc.iptime.org/book/data/rsi-jj.xlsx</u>로 파일을 다운로드(왼쪽 그림)
  - · 먼저 농림어업의 비중을 구하기 위해 C20에 =C3/C\$2\*100을 입력
  - · C20을 선택하고 선택된 영역의 오른쪽 맨 아래로 마우스 포인터를 이동하여 J20까지 마우스를 끌어서 클 릭하여 복사
  - · C20부터 J20까지 블록으로 선택하고 블록으로 선택된 영역의 오른쪽 맨 아래로 마우스 포인터를 이동하 여 C35부터 J35까지 마우스를 끌어서 클릭하여 복사하면 오른쪽 그림과 같이 전국 및 제주의 산업별-10 년 단위별 비중을 계산

|      | АВ                     | C          | D           | E           | F             | G       | H         |           | J          |    |   |                                       |           |            |            |             |          |          |          |           |
|------|------------------------|------------|-------------|-------------|---------------|---------|-----------|-----------|------------|----|---|---------------------------------------|-----------|------------|------------|-------------|----------|----------|----------|-----------|
| 1 ic | name                   | k1986      | k1996       | k2006       | k2016         | jj1986  | jj1996    | jj2006    | jj2016     |    | Α | В                                     | С         | D          | E          | F           | G        | Н        | 1        | J         |
| 2    | 0 합계                   | 94,101,212 | 437,391,320 | 871,001,468 | 1,490,047,123 | 833,856 | 4,324,188 | 7,836,546 | 15,469,564 | 20 |   | 농림어업                                  | 11.63789  | 5.75723062 | 2.99232584 | 2.12505031  | 38.66111 | 24.51101 | 15.75468 | 11.690278 |
| 3    | 1 농림어업                 | 10,951,396 | 25,181,627  | 26,063,202  | 31,664,251    | 322,378 | 1,059,902 | 1,234,623 | 1,808,435  | 21 |   | 광업                                    | 1.1920516 | 0.42023833 | 0.23328227 | 0.185346487 | 0.09498  | 0.454328 | 0.160925 | 0.1603794 |
| 4    | 2 광업                   | 1,121,735  | 1,838,086   | 2,031,892   | 2,761,750     | 792     | 19,646    | 12,611    | 24,810     | 22 |   | 제조업                                   | 27.562068 | 26.6305845 | 27.8610701 | 29.46649446 | 3.533464 | 2.838429 | 2.724083 | 3.3585368 |
| 5    | 3 제조업                  | 25,936,240 | 116,479,865 | 242,670,330 | 439,064,653   | 29,464  | 122,739   | 213,474   | 519,551    | 23 |   | 전기,가스,증기및수도사업                         | 2.9664411 | 1.82340861 | 2.06830719 | 2.675084458 | 1.666835 | 1.038576 | 2.491927 | 3.2629814 |
| 6    | 4 전기,가스,증기및수도사업        | 2,791,457  | 7,975,431   | 18,014,986  | 39,860,019    | 13,899  | 44,910    | 195,281   | 504,769    | 24 |   | 건설업                                   | 5.6495107 | 8.94530875 | 6.31531703 | 5,713415078 | 6.015187 | 9.512399 | 8.089253 | 11.363746 |
| 7    | 5 건설업                  | 5,316,258  | 39,126,004  | 55,006,504  | 85,132,577    | 50,158  | 411,334   | 633,918   | 1,757,922  | 25 |   | 도매및소매업                                | 13,298955 | 9.1216881  | 8,56084895 | 8.378506765 | 8.970134 | 8,276675 | 8.013926 | 8.1673213 |
| 8    | 6 도매및소매업               | 12,514,478 | 39,897,472  | 74,565,120  | 124,843,699   | 74,798  | 357,899   | 628,015   | 1,263,449  | 26 |   | 우수언                                   | 47655964  | 4 80294099 | 4 19256159 | 3 968880587 | 5 0703   | 5 748316 | 5.068075 | 6213252   |
| 9    | 7 운수업                  | 4,484,484  | 21,007,647  | 36,517,273  | 59,138,191    | 42,279  | 248,568   | 397,162   | 961,163    | 27 |   | 스바미으시저어                               | 2 7010/02 | 2 002/0205 | 2 70527/80 | 2 75 200062 | 2 075914 | 6 971047 | 5.827/65 | 6 667376  |
| 10   | 8 숙박및음식점업              | 2,627,258  | 12,721,518  | 23,562,984  | 41,035,758    | 24,814  | 297,117   | 456,672   | 1,031,414  | 20 |   | · · · · · · · · · · · · · · · · · · · | 2.7913492 | 2.50045005 | 4.05200140 | 2.73333002  | 2.373014 | 0.071047 | 2.02/403 | 2,0026724 |
| 11   | 9 출판,영상, 방송통신 및 정보서비스업 | 2,565,906  | 15,872,407  | 40,527,711  | 56,649,470    | 18,277  | 115,745   | 205,336   | 588,257    | 28 |   | 물편,영상, 영웅중신 및 성모세미스입                  | 2.7207513 | 3.0288802  | 4.05300140 | 3.801857614 | 2.191805 | 2.0/0088 | 2.020230 | 3.8026734 |
| 12   | 10 금융및보험업              | 3,969,325  | 27,063,817  | 55,871,145  | 81,117,774    | 24,464  | 250,287   | 505,525   | 698,313    | 29 |   | 금융및보험업                                | 4.2181444 | 6.18755237 | 6.41458678 | 5.443973734 | 2.93384  | 5.788069 | 6.450865 | 4.5141091 |
| 13   | 11 부동산업및임대업            | 4,880,372  | 38,519,650  | 75,167,732  | 118,214,996   | 45,033  | 379,420   | 728,818   | 1,243,821  | 30 |   | 부동산업및임대업                              | 5.1863009 | 8.80667911 | 8.63003505 | 7.933641438 | 5.400573 | 8.774364 | 9.300245 | 8.0404399 |
| 14   | 12 사업서비스업              | 2,839,936  | 21,915,628  | 54,546,356  | 110,700,987   | 10,276  | 61,452    | 212,666   | 608,620    | 31 |   | 사업서비스업                                | 3.017959  | 5.01053107 | 6.26248726 | 7.429361481 | 1.232347 | 1.421122 | 2.713772 | 3.9343061 |
| 15   | 13 공공행정,국방및사회보장행정      | 5,848,783  | 25,768,161  | 60,170,028  | 107,963,472   | 70,580  | 390,063   | 986,471   | 1,888,696  | 32 |   | 공공행정,국방및사회보장행정                        | 6.2154173 | 5.89132884 | 6.90814312 | 7.245641452 | 8.464291 | 9.020491 | 12.58808 | 12.209109 |
| 16   | 14 교육서비스업              | 4,310,779  | 21,239,840  | 50,097,626  | 77,640,691    | 59,744  | 264,653   | 610,528   | 986,147    | 33 |   | 교육서비스업                                | 4.5810026 | 4.85602686 | 5.75172693 | 5.210619839 | 7.164786 | 6.120294 | 7.790779 | 6.3747563 |
| 17   | 15 보건업및사회복지서비스업        | 1,659,987  | 10,001,912  | 29,554,148  | 68,196,649    | 15,694  | 118,070   | 367,653   | 779,817    | 34 |   | 보건업및사회복지서비스업                          | 1.7640442 | 2.28671936 | 3.39312264 | 4.576811562 | 1.8821   | 2.730455 | 4.691518 | 5.0409759 |
| 18   | 16 문화 및 기타서비스업         | 2,282,818  | 12,782,255  | 26,634,431  | 46,062,186    | 31,206  | 182,383   | 447,793   | 804,380    | 35 |   | 문화 및 기타서비스업                           | 2.4259177 | 2.92238424 | 3.05790885 | 3.091324112 | 3.742373 | 4.21774  | 5.714163 | 5.1997587 |

- 앞의 자료를 이용하여 산업별-10년 단위별 비중을 내림차순으로 정렬하면 다음 그림과 같음 · C20부터 J35까지 선택하여 복사하고 C38부터 J53까지 선택하여 붙여넣기-값을 선택하고 확인을 클릭 · 1986년 전국 산업의 비중을 내림차순으로 정렬하기 위하여 C38부터 C53까지 선택한 후 정렬 및 필터-숫 자 내림차순 정리를 실행하고, 나마지 연도에 대해서도 동일하게 실행
- · 1986년 제주 산업의 비중을 내림차순으로 정렬하기 위하여 G38부터 G53까지 선택한 후 정렬 및 필터-숫 자 내림차순 정리를 실행하고, 나머지 연도에 대해서도 동일하게 실행

|    | А  | В | С         | D          | E          | F           | G        | Н        | - I      | J         |
|----|----|---|-----------|------------|------------|-------------|----------|----------|----------|-----------|
| 38 | 1  |   | 27.562068 | 26.6305845 | 27.8610701 | 29.46649446 | 38.66111 | 24.51101 | 15.75468 | 12.209109 |
| 39 | 2  |   | 13.298955 | 9.1216881  | 8.63003505 | 8.378506765 | 8.970134 | 9.512399 | 12.58808 | 11.690278 |
| 40 | 3  |   | 11.63789  | 8.94530875 | 8.56084895 | 7.933641438 | 8.464291 | 9.020491 | 9.300245 | 11.363746 |
| 41 | 4  |   | 6.2154173 | 8.80667911 | 6.90814312 | 7.429361481 | 7.164786 | 8.774364 | 8.089253 | 8.1673213 |
| 42 | 5  |   | 5.6495107 | 6.18755237 | 6.41458678 | 7.245641452 | 6.015187 | 8.276675 | 8.013926 | 8.0404399 |
| 43 | 6  |   | 5.1863009 | 5.89132884 | 6.31531703 | 5.713415078 | 5.400573 | 6.871047 | 7.790779 | 6.667376  |
| 44 | 7  |   | 4.7655964 | 5.75723062 | 6.26248726 | 5.443973734 | 5.0703   | 6.120294 | 6.450865 | 6.3747563 |
| 45 | 8  |   | 4.5810026 | 5.01053107 | 5.75172693 | 5.210619839 | 3.742373 | 5.788069 | 5.827465 | 6.213252  |
| 46 | 9  |   | 4.2181444 | 4.85602686 | 4.65300146 | 4.576811562 | 3.533464 | 5.748316 | 5.714163 | 5.1997587 |
| 47 | 10 |   | 3.017959  | 4.80294099 | 4.19256159 | 3.968880587 | 2.975814 | 4.21774  | 5.068075 | 5.0409759 |
| 48 | 11 |   | 2.9664411 | 3.6288802  | 3.39312264 | 3.801857614 | 2.93384  | 2.838429 | 4.691518 | 4.5141091 |
| 49 | 12 |   | 2.7919492 | 2.92238424 | 3.05790885 | 3.091324112 | 2.191865 | 2.730455 | 2.724083 | 3.9343061 |
| 50 | 13 |   | 2.7267513 | 2.90849805 | 2.99232584 | 2.75399062  | 1.8821   | 2.676688 | 2.713772 | 3.8026734 |
| 51 | 14 |   | 2.4259177 | 2.28671936 | 2.70527489 | 2.675084458 | 1.666835 | 1.421122 | 2.620236 | 3.3585368 |
| 52 | 15 |   | 1.7640442 | 1.82340861 | 2.06830719 | 2.12505031  | 1.232347 | 1.038576 | 2.491927 | 3.2629814 |
| 53 | 16 |   | 1.1920516 | 0.42023833 | 0.23328227 | 0.185346487 | 0.09498  | 0.454328 | 0.160925 | 0.1603794 |



#### 앞의 자료를 이용하여 산업별-10년 단위별 비중의 누적률을 다음과 같이 계산

- · C56부터 J56까지 0을 입력하고, C57에 =C38를 입력한 후 C57을 선택하고 선택된 영역의 오른쪽 맨 아 래로 마우스 포인터를 이동하여 J57까지 마우스를 끌어서 클릭하여 복사
- · C58에 =C57+C39를 입력한 후 C58을 선택하고 선택된 영역의 오른쪽 맨 아래로 마우스 포인터를 이동 하여 J58까지 마우스를 끌어서 클릭하여 복사
- · C58부터 J58까지 블록으로 선택하고 블록으로 선택된 영역의 오른쪽 맨 아래로 마우스 포인터를 이동하 여 C72부터 J72까지 마우스를 끌어서 클릭하여 복사하면 아래 그림과 같이 전국 및 제주의 산업별-10년 단위별 비중의 누적률을 계산

|    | Α  | В | С         | D          | E          | F           | G        | Н        | 1        | J         |
|----|----|---|-----------|------------|------------|-------------|----------|----------|----------|-----------|
| 56 | 0  |   | 0         | 0          | 0          | 0           | 0        | 0        | 0        | 0         |
| 57 | 1  |   | 27.562068 | 26.6305845 | 27.8610701 | 29.46649446 | 38.66111 | 24.51101 | 15.75468 | 12.209109 |
| 58 | 2  |   | 40.861023 | 35.7522726 | 36.4911052 | 37.84500123 | 47.63125 | 34.02341 | 28.34277 | 23.899387 |
| 59 | 3  |   | 52.498914 | 44.6975813 | 45.0519541 | 45.77864267 | 56.09554 | 43.0439  | 37.64301 | 35.263133 |
| 60 | 4  |   | 58.714331 | 53.5042604 | 51.9600973 | 53.20800415 | 63.26032 | 51.81826 | 45.73227 | 43.430455 |
| 61 | 5  |   | 64.363842 | 59.6918128 | 58.374684  | 60.4536456  | 69.27551 | 60.09494 | 53.74619 | 51.470895 |
| 62 | 6  |   | 69.550142 | 65.5831417 | 64.6900011 | 66.16706068 | 74.67608 | 66.96598 | 61.53697 | 58.138271 |
| 63 | 7  |   | 74.315739 | 71.3403723 | 70.9524883 | 71.61103441 | 79.74638 | 73.08628 | 67.98784 | 64.513027 |
| 64 | 8  |   | 78.896742 | 76.3509034 | 76.7042153 | 76.82165425 | 83.48876 | 78.87435 | 73.8153  | 70.726279 |
| 65 | 9  |   | 83.114886 | 81.2069302 | 81.3572167 | 81.39846581 | 87.02222 | 84.62266 | 79.52946 | 75.926038 |
| 66 | 10 |   | 86.132845 | 86.0098712 | 85.5497783 | 85.3673464  | 89.99803 | 88.8404  | 84.59754 | 80.967014 |
| 67 | 11 |   | 89.099286 | 89.6387514 | 88.942901  | 89.16920401 | 92.93187 | 91.67883 | 89.28906 | 85.481123 |
| 68 | 12 |   | 91.891235 | 92.5611356 | 92.0008098 | 92.26052813 | 95.12374 | 94.40929 | 92.01314 | 89.415429 |
| 69 | 13 |   | 94.617986 | 95.4696337 | 94.9931356 | 95.01451875 | 97.00584 | 97.08597 | 94.72691 | 93.218102 |
| 70 | 14 |   | 97.043904 | 97.7563531 | 97.6984105 | 97.6896032  | 98.67267 | 98.5071  | 97.34715 | 96.576639 |
| 71 | 15 |   | 98.807948 | 99.5797617 | 99.7667177 | 99.81465351 | 99.90502 | 99.54567 | 99.83907 | 99.839621 |
| 72 | 16 |   | 100       | 100        | 100        | 100         | 100      | 100      | 100      | 100       |



- 앞의 자료를 이용하여 지방전문화곡선을 그릴 수 있는데 1986년 및 2016년 전국 및 제주의 누적률로 그 림을 그려보면 각각 아래 그림과 같음
- · 1986년 그림은 C56부터 C72까지 먼저 선택하고 Ctrl 키를 누른 상태에서 G56부터 G72까지 선택한 후 삽입-차트 꺾은선형을 선택
- · 2016년 그림은 F56부터 F72까지 먼저 선택하고 Ctrl 키를 누른 상태에서 J56부터 J72까지 선택한 후 삽 입-차트 꺾은선형을 선택
- 그림에서 보듯이 1986년의 경우 제주가 전국보다 더 전문화되어 있고, 2016년의 경우 전국이 제주보다 더 전문화되어 있음을 보여주고 있음



# 🔏 제주대학교 표. R 지방전문화곡선

A<-matrix(data=NA, nrow=16, ncol=8, byrow=T)

A[i,1]<-(k1986[i+1]/k1986[1])\*100 A[i,2]<-(k1996[i+1]/k1996[1])\*100 A[i,3]<-(k2006[i+1]/k2006[1])\*100 A[i,4]<-(k2016[i+1]/k2016[1])\*100

앞에서 계속

for(i in 1:16) {
 for(j in 1:4) {

}

b3-ch4-11.R

|   | > AA  |        |        |        |        |        |        |        |        |
|---|-------|--------|--------|--------|--------|--------|--------|--------|--------|
|   |       | [,1]   | [,2]   | [,3]   | [,4]   | [,5]   | [,6]   | [,7]   | [,8]   |
|   | [1,]  | 11.638 | 5.757  | 2.992  | 2.125  | 38.661 | 24.511 | 15.755 | 11.690 |
|   | [2,]  | 1.192  | 0.420  | 0.233  | 0.185  | 0.095  | 0.454  | 0.161  | 0.160  |
|   | [3,]  | 27.562 | 26.631 | 27.861 | 29.466 | 3.533  | 2.838  | 2.724  | 3.359  |
|   | [4,]  | 2.966  | 1.823  | 2.068  | 2.675  | 1.667  | 1.039  | 2.492  | 3.263  |
|   | [5,]  | 5.650  | 8.945  | 6.315  | 5.713  | 6.015  | 9.512  | 8.089  | 11.364 |
|   | [6,]  | 13.299 | 9.122  | 8.561  | 8.379  | 8.970  | 8.277  | 8.014  | 8.167  |
|   | [7,]  | 4.766  | 4.803  | 4.193  | 3.969  | 5.070  | 5.748  | 5.068  | 6.213  |
| 2 | [8,]  | 2.792  | 2.908  | 2.705  | 2.754  | 2.976  | 6.871  | 5.827  | 6.667  |
|   | [9,]  | 2.727  | 3.629  | 4.653  | 3.802  | 2.192  | 2.677  | 2.620  | 3.803  |
| 1 | [10,] | 4.218  | 6.188  | 6.415  | 5.444  | 2.934  | 5.788  | 6.451  | 4.514  |
|   | [11,] | 5.186  | 8.807  | 8.630  | 7.934  | 5.401  | 8.774  | 9.300  | 8.040  |
|   | [12,] | 3.018  | 5.011  | 6.262  | 7.429  | 1.232  | 1.421  | 2.714  | 3.934  |
|   | [13,] | 6.215  | 5.891  | 6.908  | 7.246  | 8.464  | 9.020  | 12.588 | 12.209 |
|   | [14,] | 4.581  | 4.856  | 5.752  | 5.211  | 7.165  | 6.120  | 7.791  | 6.375  |
|   | [15,] | 1.764  | 2.287  | 3.393  | 4.577  | 1.882  | 2.730  | 4.692  | 5.041  |
|   | [16,] | 2.426  | 2.922  | 3.058  | 3.091  | 3.742  | 4.218  | 5.714  | 5.200  |

```
}
for(i in 1:16) {
for(j in 5:8) {
    A[i,5]<-(jj1986[i+1]/jj1986[1])*100
    A[i,6]<-(jj1996[i+1]/jj1996[1])*100
    A[i,7]<-(jj2006[i+1]/jj2006[1])*100
    A[i,8]<-(jj2016[i+1]/jj2016[1])*100
    }
}
AA<-round(A,digits=3)
AA
뒤에 계속
```



8.040

6.375

6.213

5.200 5.041

3.934 3.803

3.359

3.263

0.160

| b3-ch4-11.R                                                     |   |                            |                  |                    |                            |                    |                  |                  |                  |                            |
|-----------------------------------------------------------------|---|----------------------------|------------------|--------------------|----------------------------|--------------------|------------------|------------------|------------------|----------------------------|
| 앞에서 계속                                                          |   |                            |                  |                    |                            |                    |                  |                  |                  |                            |
| k1986<-A[,1]                                                    |   | > 55                       |                  | -                  |                            |                    |                  |                  |                  |                            |
| k1986_1<-sort(k1986, decreasing=T)                              |   | [1]                        | k1986_1          | jj1986_1<br>38_661 | k1996_1                    | jj1996_1<br>24_511 | k2006_1          | jj2006_1         | k2016_1          | jj2016_1                   |
| k1986_2<-cumsum(k1986_1)                                        |   | [2,]                       | 13.299           | 8.970              | 9.122                      | 9.512              | 8.630            | 12.588           | 8.379            | 11.690                     |
| k1986_3<-c(0,k1986_2)                                           |   | [4,]                       | 6.215            | 7.165              | 8.807<br>6.188             | 8.774              | 6.908<br>6.415   | 8.089            | 7.429            | 8.167                      |
| jj1986<-A[,5]                                                   |   | [6,]                       | 5.186            | 5.401              | 5.891                      | 6.871<br>6.120     | 6.315            | 7.791            | 5.713            | 6.667<br>6.375             |
| jj1986_1<-sort(jj1986, decreasing=T)                            |   | [8,]                       | 4.581<br>4.218   | 3.742              | 5.011<br>4.856             | 5.788<br>5.748     | 5.752            | 5.827<br>5.714   | 5.211<br>4.577   | 6.213<br>5.200             |
| jj1986_2<-cumsum(jj1986_1)                                      |   | [10,]<br>[11,]             | 3.018<br>2.966   | 2.976<br>2.934     | 4.803<br>3.629             | 4.218<br>2.838     | 4.193<br>3.393   | 5.068<br>4.692   | 3.969<br>3.802   | 5.041<br>4.514             |
| jj1986_3<-c(0,jj1986_2)                                         |   | [12,]<br>[13,]             | 2.792<br>2.727   | 2.192<br>1.882     | 2.922<br>2.908             | 2.730<br>2.677     | 3.058<br>2.992   | 2.724<br>2.714   | 3.091<br>2.754   | 3.934<br>3.803             |
| (1996년, 2006년 중략)                                               |   | [14,]<br>[15,]             | 2.426<br>1.764   | 1.667<br>1.232     | 2.287<br>1.823             | 1.421<br>1.039     | 2.705<br>2.068   | 2.620<br>2.492   | 2.675<br>2.125   | 3.359<br>3.263             |
| k2016<-A[,4]                                                    |   | [16,]                      | 1.192            | 0.095              | 0.420                      | 0.454              | 0.233            | 0.161            | 0.185            | 0.160                      |
| k2016_1<-sort(k2016, decreasing=T)                              |   |                            |                  |                    |                            |                    |                  |                  |                  |                            |
| k2016_2<-cumsum(k2016_1)                                        |   |                            |                  |                    |                            |                    |                  |                  |                  |                            |
| k2016_3<-c(0,k2016_2)                                           | > | DD                         | 1005 2 4         | 1100C 2 1          | L1005 D .                  | 41005 3            | 1-2005 P         | 42005 2          | 1-201 C - 2      | diante a                   |
| jj2016<-A[,8]                                                   |   | [1,]                       | 0.000            | 0.000              | 0.000                      | 0.000              | 0.000            | 0.000            | 0.000            | 0.000                      |
| jj2016_1<-sort(jj2016, decreasing=T)                            |   | [3,]<br>[4.1               | 40.861           | 47.631             | 35.752                     | 34.023             | 36.491           | 28.343           | 37.845           | 23.899                     |
| jj2016_2<-cumsum(jj2016_1)                                      |   | [5,]<br>[6,]               | 58.714<br>64.364 | 63.260<br>69.276   | 53.504<br>59.692           | 51.818<br>60.095   | 51.960<br>58.375 | 45.732<br>53.746 | 53.208<br>60.454 | 43.430<br>51.471           |
| jj2016_3<-c(0,jj2016_2)                                         |   | [7,]<br>[8,]               | 69.550<br>74.316 | 74.676<br>79.746   | 65.583<br>71.340           | 66.966<br>73.086   | 64.690<br>70.952 | 61.537<br>67.988 | 66.167<br>71.611 | 58.138<br>64.513           |
| C<-cbind(k1986_1,jj1986_1,k1996_1,jj1996_1,k2006_1,jj2006_1,k20 | Ē | [9,]<br>10,]               | 78.897<br>83.115 | 83.489<br>87.022   | 76.351<br>81.207           | 78.874<br>84.623   | 76.704<br>81.357 | 73.815<br>79.529 | 76.822<br>81.398 | 70.726<br>75.926           |
| 16_1,jj2016_1)                                                  |   | 11,]<br>12,]               | 86.133<br>89.099 | 89.998<br>92.932   | 86.010<br>89.639           | 88.840<br>91.679   | 85.550<br>88.943 | 84.598<br>89.289 | 85.367<br>89.169 | 80.967<br>85.481           |
| CC<-round(C,digits=3)                                           |   | 13,]<br>14,]               | 91.891<br>94.618 | 95.124<br>97.006   | 92.561<br>95.470<br>97.756 | 94.409<br>97.086   | 92.001           | 92.013           | 92.261           | 89.415<br>93.218<br>96.577 |
| CC                                                              |   | 13, ]<br>16, ]<br>17, 1, 1 | 98.808           | 99.905             | 99.580                     | 99.546             | 99.767           | 97.347<br>99.839 | 99.815           | 99.840                     |
| D<-cbind(k1986_3,jj1986_3,k1996_3,jj1996_3,k2006_3,jj2006_3,k20 |   | د ۱۹۹                      |                  | 100.000            | 100.000                    | 100.000            | 100.000          | 100.000          | 100.000          | 100.000                    |
| 16_3,jj2016_3)                                                  |   |                            |                  |                    |                            |                    |                  |                  |                  |                            |
| DD<-round(D,digits=3)                                           |   |                            |                  |                    |                            |                    |                  |                  |                  |                            |
| DD                                                              |   |                            |                  |                    |                            |                    |                  |                  |                  |                            |
| ↓뒤에 계속                                                          |   |                            |                  |                    |                            |                    |                  |                  |                  |                            |



cumulative sum

| b3-ch4-11.R                                                                                   |
|-----------------------------------------------------------------------------------------------|
| 앞에서 계속                                                                                        |
| par(mfrow=c(2,1))                                                                             |
| plot(id,k1986_3, type="I", xlab="", ylab="cumulative sum", col="black",main="지방전문화곡선(1986년)") |
| lines(id,jj1986_3, col="blue",lty=2)                                                          |
| legend("bottomright", legend=c("전국","제주"), col=c("black","blue"), lty=c(1,2))                 |
| plot(id,k2016_3, type="I", xlab="",ylab="cumulative sum", col="black",main="지방전문화곡선(2016년)")  |
| lines(id,jj2016_3, col="blue",lty=2)                                                          |
| legend("bottomright", legend=c("전국","제주"), col=c("black","blue"), lty=c(1,2))                 |





ו 







## J 제조대학교 I. Excel 변화할당분석

- 변화할당분석(shift-share analysis)은 두 시점간 지역 산업의 성장요인을 분석하는 방법
- 지역산업의 성장요인을 전국의 산업성장효과, 지역의 산업구조효과, 지역할당효과로 구분
- 즉, 전국적으로 빠른 성장을 보이는 산업의 구성비가 큰 지역은 상대적으로 빠른 성장을 한다는 전제



지역의 실제성장변화를 다음 식과 같이 국가성장효과(National Growth Effect: NGE), 산업혼합효과 (Industrial Mix Effect: IME), 지역할당효과(Regional Share Effect: RSE)로 분해

·
$$NGE_{ij} = S_{ij,0} \times G$$
 (전국의 경제성장이 지역경제성장에 미치는 효과)

- · $IME_{ij} = S_{ij,0} \times (G_i-G)$  (산업의 전국적인 성장특징이 지역경제성장에 미치는 영향)
- ·  $RSE_{ij} = S_{ij,0} \times (G_{ij}-G_i)$  (지역의 생산환경의 특징으로 인한 지역의 성장)
- 단, *S<sub>ii.0</sub>는* 기준 연도 j지역 i산업 부가가치

G는 기준 연도와 비교 연도간 전국 전산업 부가가치 성장률  
$$G_i$$
는 기준 연도와 비교연도간 전국 i산업 부가가치 성장률  
 $G_i$ -G는 전국 산업별 성장률 – 전국 산업평균 성장률  
 $G_{ij}$ 는 기준 연도와 비교연도간 j지역 i산업 부가가치 성장률  
 $G_{ij}$ - $G_i$ 는 j지역 산업별 성장률 – 전국 산업별 성장률



- 국가성장효과 : 일정기간동안 국가 전체의 산업성장이 지역에도 똑같이 유발되었다고 가정할 때 그 지역 산업이 국가 전체의 성장률로 성장했을 때 지역에서 발생할 것으로 기대되는 성장효과로 j지역 i산업의 부 가가치 총증가량 중에서 국가 전체의 모든 산업의 평균성장으로 유발된 부가가치 증가
- 산업혼합효과 : 한 지역이 전국적으로 급격히 성장하는 산업의 구성비가 큰 경우 그 지역은 유리한 산업 구조를 가졌다고 보고 그 산업의 구성비가 작은 지역보다 빨리 성장하는 효과로 전국 i산업의 성장률에서 전국 전산업 성장률을 뺀 전국 i산업의 순성장률이 j지역 i산업에 대하여 유발한 부가가치 증가
- 지역할당효과 : 특정산업의 해당지역 성장률과 전국 성장률의 차이로 나타나는 효과로 j지역 i산업의 성장 률에서 전국의 i산업의 성장률을 뺀 j지역 i산업의 순성장률이 j지역 i산업에 대하여 유발한 부가가치
- (예) 전국과 제주의 2012년 및 2017년 외국인직접투자에 관한 자료(ss-fdi.xlsx)를 이용하여 변이할당분 석으로 국가성장효과, 산업혼합효과, 지역할당효과를 계산해 보라

· <u>http://kanggc.iptime.org/book/data/</u>ss-fdi.xlsx로 파일을 다운로드

|    | А            | В          | С          | D          | E        | F       | G         | н          | - I     |
|----|--------------|------------|------------|------------|----------|---------|-----------|------------|---------|
| 1  |              | 전국(12)     | 전국(17)     | 증가액(12-17) | 증가율      | 제주(12)  | 제주(17)    | 증가액(12-17) | 증가율     |
| 2  | 전체           | 25,255,728 | 42,223,318 | 16,967,590 | 0.671831 | 348,049 | 3,117,570 | 2,769,522  | 7.9573  |
| 3  | 식품           | 2,470,599  | 2,963,973  | 493,374    | 0.199698 | 115     | 2,337     | 2,222      | 19.3229 |
| 4  | 도・소매(유통)     | 13,427,179 | 18,219,484 | 4,792,305  | 0.356911 | 14,658  | 33,260    | 18,601     | 1.2690  |
| 5  | 숙박·음식점       | 1,421,094  | 4,265,845  | 2,844,751  | 2.001804 | 69,598  | 1,569,717 | 1,500,119  | 21.5541 |
| 6  | 부동산          | 3,520,162  | 7,061,345  | 3,541,183  | 1.005972 | 196,151 | 1,299,366 | 1,103,215  | 5.6243  |
| 7  | 사업지원・임대      | 780,376    | 1,233,123  | 452,747    | 0.580165 | 1,279   | 48,242    | 46,963     | 36.7040 |
| 8  | 연구개발・전문・과학기술 | 2,361,300  | 5,498,108  | 3,136,808  | 1.328424 | 580     | 36,843    | 36,263     | 62.5175 |
| 9  | 며가・스포츠・오락    | 296,501    | 637,510    | 341,009    | 1.150111 | 62,927  | 122,276   | 59,349     | 0.9431  |
| 10 | 종합건설         | 891,170    | 2,204,714  | 1,313,544  | 1.473954 | 291     | 2,938     | 2,647      | 9.0987  |
| 11 | 전문직별 공사      | 87347      | 139216     | 51,869     | 0.593827 | 2,450   | 2,593     | 143        | 0.0582  |
|    |              |            |            | -          |          |         |           |            |         |

- · 먼저 국가성장효과를 계산하기 위해 J3에 =F3\*E\$2를 입력
- 산업혼합효과를 계산하기 위해 K3에 =F3\*(E3-E\$2)를 입력
- 지역할당효과를 계산하기 위해 L3에 =F3\*(I3-E3)를 입력
- 지역요소효과(=산업혼합효과+지역할당효과)를 계산하기 위해 M3에 =K3+L3를 입력
- · J3부터 M3까지 블록으로 선택하고 블록으로 선택된 영역의 오른쪽 맨 아래로 마우스 포인터를 이동하 여 J11부터 M11까지 마우스를 끌어서 클릭하여 복사하면 아래 그림과 같이 3가지 효과를 각각 계산 · J2에 =sum(J3:J11)을 구하여 확인해 보고 M2까지 복사하면 3가지 효과 및 지역요소효과의 합을 계산

|    | A            | J       | K      | L         | M         |
|----|--------------|---------|--------|-----------|-----------|
| 1  |              | 국가성장효과  | 산업혼합효과 | 지역할당효과    | 지역요소효과    |
| 2  | 전체           | 233830  | 183837 | 2351855   | 2535691   |
| 3  | 식품           | 77      | -54    | 2,199     | 2,145     |
| 4  | 도・소매(유통)     | 9,848   | -4,616 | 13,370    | 8,753     |
| 5  | 숙박·음식점       | 46,758  | 92,563 | 1,360,798 | 1,453,361 |
| 6  | 부동산          | 131,780 | 65,542 | 905,893   | 971,435   |
| 7  | 사업지원・임대      | 860     | -117   | 46,220    | 46,103    |
| 8  | 연구개발・전문・과학기술 | 390     | 381    | 35,492    | 35,873    |
| 9  | 여가・스포츠・오락    | 42,276  | 30,097 | -13,024   | 17,073    |
| 10 | 종합건설         | 195     | 233    | 2,218     | 2,451     |
| 11 | 전문직별 공사      | 1,646   | -191   | -1,312    | -1,503    |

-

계산된 제주지역의 산업별 산업혼합효과(IME) 및 지역할당효과(RSE)의 부호를 이용하여 산업을 아래 표 와 같이 4가지 유형을 구분하고 이를 산업 포지셔닝 맵으로 그리면 아래 그림과 같음

| 성장유망산업    | IME > 0 및 RSE > 0 |
|-----------|-------------------|
| 산업구조 우위산업 | IME > 0 및 RSE < 0 |
| 입지여건 우위산업 | IME < 0 및 RSE > 0 |
| 열위산업      | IME < 0 및 RSE < 0 |



# <u>제조대학교</u> Ⅱ. R 변화할당분석

b3-ch4-12.R library(openxlsx) data1<-read.xlsx("http://kanggc.iptime.org/book/data/ss-fdi-e.xlsx") k2012<-data1\$k2012;k2017<-data1\$k2017 jj2012<-data1\$jj2012;jj2017<-data1\$jj2017 A<-matrix(data=NA, nrow=10, ncol=7, byrow=T) for(i in 1:10) { for(j in 1:4) { > AA A[i,1] < -(k2017[i] - k2012[i])[,2] [,5] [.1] [,3] [,4] [,6] [,7] A[i,2] < -(A[i,1]/k2012[i])[1,] 16967590 0.672 2769521.577 7.957 233830.135 183836.697 2351854.745 [2,] 493374 0.200 2222.128 19.323 77.261 -54.295 2199.163 A[i,3]<-(jj2017[i]-jj2012[i]) 18601.242 [3,] 4792305 0.357 1.269 9847.915 -4616.205 13369.532 [4,]2.002 1500118.806 21.554 46757.927 92563.025 1360797.854 2844751 A[i,4] < -(A[i,3]/i) (2012[i])[5,] 1.006 1103215.190 5.624 131780.181 65541.838 3541183 905893.171 } [6,] 452747 0.580 46962.705 36.704 859.608 -117.28746220.384 [7,] 3136808 1.328 36262.962 62.517 389.692 380.853 35492.416 } [8,] 341009 1.150 42276.138 59349.160 0.943 30096.552 -13023.529for(i in 1:9) { 1313544 1.474 2217.942 [9,] 2646.695 9.099 195.426 233.326 51869 0.594 [10,]142.689 0.058 1645.987 -191.111-1312.187for(j in 5:7) { A[i+1,5]<-(jj2012[i+1])\*A[1,2] A[i+1,6]<-jj2012[i+1]\*(A[i+1,2]-A[1,2]) A[i+1,7] < -ii2012[i+1] \* (A[i+1,4] - A[i+1,2])} } CS < -colSums(A[,5:7], na.rm=T)A[1,5]<-CS[1] A[1,6]<-CS[2] A[1,7]<-CS[3] AA < -round(A, digits = 3)AA





- 지역성장률시차분석(regional growth rate differential analysis)은 산업별 성장 기여수치를 성장률로 표 시하는 방법으로 변화할당분석의 확장모형
- 지역 총성장률시차(TR)는 지역의 산업별 성장률에 해당 산업의 구성비를 가중하여 구하는 지역 실질변화 성장률(RR)과 전국의 산업별 성장률에 해당 산업의 구성비를 가중하여 구하는 전국 실질변화성장률(NR) 의 차이로 계산
- 지역 총성장률시차(TR)은 지역산업의 구조적 유리함을 나타내는 가중요인(weight part: WP)과 지역산업 의 경쟁력을 나타내는 경쟁력요인(rate part: RP)로 분해되는데 WP는 변화할당분석에서 산업혼합효과를 나타내고, RP는 지역할당효과를 나타내는데 계산식은 다음과 같음

 $\cdot$  TR = RR – NR = WP + RP

- · RR =  $G_{ij} \ge \frac{S_{ij,0}}{S_{j,0}} \left( \frac{S_{ij,0}}{S_{j,0}} \leftarrow j 지역 기준 연도 산업별 구성비 \right)$
- · NR =  $G_i \ge \frac{S_{i,0}}{S_{.,0}} \left( \frac{S_{i,0}}{S_{.,0}} \leftarrow \text{전국 기준 연도 산업별 구성비} \right)$
- WP =  $G_i \times (\frac{S_{ij,0}}{S_{j,0}} \frac{S_{i,0}}{S_{..,0}})$
- $\cdot \mathsf{RP} = (G_{ij} G_i) \times \frac{S_{ij,0}}{S_{j,0}}$
- 단, *S<sub>ij,0</sub>는 기준 연도 j*지역 i산업 부가가치

*S*<sub>*i*0</sub>는 기준 연도 j지역 전산업 부가가치

S<sub>i.0</sub>는 기준 연도 전국 i산업 부가가치

S\_\_\_0는 기준 연도 전국 전산업 부가가치

G는 기준 연도와 비교 연도간 전국 전산업 부가가치 성장률 G<sub>i</sub>는 기준 연도와 비교연도간 전국 i산업 부가가치 성장률

G<sub>ii</sub>는 기준 연도와 비교연도간 j지역 i산업 부가가치 성장률



### (예) 전국 및 제주의 산업별 부가가치에 관한 자료(rgda.xlsx)를 이용하여 지역성장률시차분석으로 가중요 인 및 경쟁력요인을 계산해 보라

### · <u>http://kanggc.iptime.org/book/data/</u>rgda.xlsx로 파일을 다운로드

|    | A                    | В             | С             | D        | E          | F          |
|----|----------------------|---------------|---------------|----------|------------|------------|
| 1  | 2010-2017년(명목)       |               |               |          |            |            |
| 2  |                      | 2010          | 2017          |          | 2010       | 2017       |
| 3  | 전국                   | 1,145,266,068 | 1,570,225,280 | 제주       | 10,168,054 | 16,408,322 |
| 4  | 농림어업                 | 28,312,873    | 33,926,126    | 농림어업     | 1,675,966  | 1,916,582  |
| 5  | 광업                   | 2,336,558     | 2,877,843     | 광업       | 22,257     | 23,125     |
| 6  | 제조업                  | 352,338,087   | 475,758,967   | 제조업      | 329,424    | 537,641    |
| 7  | 전기,가스,증기및수도사업        | 19,371,036    | 35,073,388    | 전기,가스,;; | 191,195    | 423,101    |
| 8  | 건설업                  | 58,500,525    | 93,870,741    | 건설업      | 689,746    | 2,095,413  |
| 9  | 도매및소매업               | 102,743,893   | 129,077,693   | 도매및소매    | 924,903    | 1,339,623  |
| 10 | 운수업                  | 44,316,272    | 57,264,796    | 운수업      | 467,363    | 765,274    |
| 11 | 숙박및음식점업              | 29,873,155    | 40,794,312    | 숙박및음식    | 605,984    | 1,037,279  |
| 12 | 출판,영상, 방송통신 및 정보서비스업 | 45,220,906    | 57,407,175    | 출판,영상,   | 224,812    | 753,680    |
| 13 | 금융및보험업               | 71,687,333    | 85,854,480    | 금융및보험    | 568,939    | 762,458    |
| 14 | 부동산업및임대업             | 90,821,825    | 122, 118, 153 | 부동산업및    | 891,229    | 1,288,928  |
| 15 | 사업서비스업               | 78,029,771    | 119,085,157   | 사업서비스    | 342,434    | 634,765    |
| 16 | 공공행정,국방및사회보장행정       | 78,748,172    | 114,635,368   | 공공행정,국   | 1,332,605  | 2,159,967  |
| 17 | 교육서비스업               | 63,845,860    | 79,427,765    | 교육서비스    | 782,199    | 1,018,455  |
| 18 | 보건업및사회복지서비스업         | 43,861,483    | 74,439,269    | 보건업및사    | 540,209    | 851,427    |
| 19 | 문화 및 기타서비스업          | 35.258.319    | 48.614.047    | 문화 및 기태  | 578.789    | 800.604    |



- · 먼저 제주의 총성장률을 계산하기 위해 G3에 =(F3-E3)/E3\*100을 입력하고, 전국의 총성장률을 계산하기 위해 H3에 =(C3-B3)/B3\*100을 각각 입력
- ·G3부터 H3까지 블록으로 선택하고 블록으로 선택된 영역의 오른쪽 맨 아래로 마우스 포인터를 이동하여 G19부터 H19까지 마우스를 끌어서 클릭하여 복사
- ·제주의 산업비중을 계산하기 위해 I4에 =E4/\$E\$3\*100을 입력하고, 전국의 산업비중을 계산하기 위해 J4 에 =B4/\$B\$3\*100을 각각 입력
- · I4부터 J4까지 블록으로 선택하고 블록으로 선택된 영역의 오른쪽 맨 아래로 마우스 포인터를 이동하여 I19부터 J19까지 마우스를 끌어서 클릭하여 복사하고, I3에 =sum(I4:I19), J3에 =sum(J4:J19)를 각각 입 력하여 합계를 구함
- ·제주의 실질변화성장률(RR)을 계산하기 위해 K4에 =G4\*I4/100을 입력하고, 전국의 실질변화성장률(NR) 을 계산하기 위해 L4에 =H4\*J4/100을 각각 입력
- · K4부터 L4까지 블록으로 선택하고 블록으로 선택된 영역의 오른쪽 맨 아래로 마우스 포인터를 이동하여 K19부터 L19까지 마우스를 끌어서 클릭하여 복사하고, K3에 =sum(K4:K19), L3에 =sum(L4:L19)를 각각 입력하여 합계를 구함
- ·지역 총성장률시차를 계산하기 위해 M3에 =K3-L3을 입력하고, M3을 블록으로 선택하고 블록으로 선택 된 영역의 오른쪽 맨 아래로 마우스 포인터를 이동하여 M19까지 마우스를 끌어서 클릭하여 복사
- · 가중요인을 계산하기 위해 N4에 =(I4-J4)\*H4/100을 입력하고, N4를 블록으로 선택하고 블록으로 선택 된 영역의 오른쪽 맨 아래로 마우스 포인터를 이동하여 N19까지 마우스를 끌어서 클릭하여 복사하고, N3 에 =sum(N4:N19)를 입력하여 합계를 구함
- ·경쟁력요인을 계산하기 위해 O4에 =(G4-H4)\*l4/100을 입력하고, O4를 블록으로 선택하고 블록으로 선 택된 영역의 오른쪽 맨 아래로 마우스 포인터를 이동하여 O19까지 마우스를 끌어서 클릭하여 복사하고, O3에 =sum(O4:O19)를 입력하여 합계를 구하면 다음 그림과 같이 계산

-

#### 계산된 제주지역의 산업별 가중요인(WP) 및 경쟁력요인(RP)의 부호를 이용하여 산업을 아래 표와 같이 4 가지 유형을 구분하고 이를 산업 포지셔닝 맵으로 그리면 아래 그림과 같음

|    |                    | 성장유             | 망산업      |          | 가중       | 가중요인 > 0 및 경쟁력요인 > 0 |           |           |         |            |       |  |
|----|--------------------|-----------------|----------|----------|----------|----------------------|-----------|-----------|---------|------------|-------|--|
|    |                    | 산업구             | 조 우두     | 의산업      | 가중       | 요인 >                 | • 0 및     | 경쟁력       | 요인 <    | : <b>O</b> |       |  |
|    |                    | 경쟁력             | 우위선      | 산업       | 가중       | 요인 <                 | : 0 및     | 경쟁력       | 요인 >    | 0          |       |  |
|    |                    | 열위산             | 업        |          | 가중       | 요인 <                 | : 0 및     | 경쟁력       | 요인 <    | 0          |       |  |
|    |                    | A               | G        | Н        |          | J                    | K         | L         | М       | N          | 0     |  |
| 1  | 2010-201           | 7년(명목)          | 총성장률     |          | 산업비중     |                      | 실질변화성경    | S 률       | 00-17   |            |       |  |
| 2  |                    |                 | 제주       | 전국       | 제주       | 전국                   | 제주(A)(RR) | 전국(B)(NR) | A-B(TR) | WP         | RP    |  |
| 3  | 전국                 |                 | 61,37131 | 37,10572 | 100      | 100                  | 61,37131  | 37,10572  | 24,27   | -0,97      | 25,24 |  |
| 4  | 농림어업               |                 | 14,35685 | 19,8258  | 16,48266 | 2,472166             | 2,366392  | 0,490127  | 1,88    | 2,78       | -0,90 |  |
| 5  | 광업                 |                 | 3,899897 | 23,16591 | 0,218891 | 0,204019             | 0,008537  | 0,047263  | -0.04   | 0,00       | -0.04 |  |
| 6  | 세소업                |                 | 63,20638 | 35,02911 | 3,239794 | 30,76474             | 2,047757  | 10,77661  | -8,73   | -9,64      | 0,91  |  |
| 7  | 선기,가스,증기           | 및수도사업           | 121,2929 | 81,06098 | 1,88035  | 1,6914               | 2,280731  | 1,371066  | 0,91    | 0,15       | 0,76  |  |
| 8  | 건설업                |                 | 203,7949 | 60,46137 | 6,783461 | 5,108029             | 13,82435  | 3,088384  | 10.74   | 1.01       | 9,72  |  |
| 9  | 도매및소매업             |                 | 44,8393  | 25,63053 | 9,096165 | 8,971181             | 4,078657  | 2,299361  | 1.78    | 0,03       | 1,75  |  |
| 10 | 문수업                | ~               | 63,74296 | 29,21844 | 4,596386 | 3,869518             | 2,929872  | 1,130613  | 1,80    | 0,21       | 1,59  |  |
| 11 | 국막및음식점)            | 입<br>소트시 미 거난 니 | 71,17267 | 36,55843 | 5,959685 | 2,608403             | 4,241667  | 0,953591  | 3,29    | 1,23       | 2,06  |  |
| 12 | [월년,888,85<br>[비스업 | 동동안 및 영포제       | 235.249  | 26.94831 | 2.210964 | 3.948507             | 5.201271  | 1.064056  | 4.14    | -0.47      | 4.61  |  |
| 13 | 금융및보험업             |                 | 34.01402 | 19,76241 | 5.595358 | 6,259448             | 1.903206  | 1.237018  | 0.67    | -0.13      | 0.80  |  |
| 14 | 부동산업및임[            | 개업              | 44,62366 | 34,45904 | 8,764991 | 7,930194             | 3,91126   | 2,732669  | 1,18    | 0.29       | 0.89  |  |
| 15 | 사업서비스업             |                 | 85,36857 | 52,61503 | 3,367744 | 6,813244             | 2,874995  | 3,58479   | -0,71   | -1,81      | 1,10  |  |
| 16 | 공공행정,국방            | 및사회보장행정         | 62,08606 | 45,5721  | 13,1058  | 6,875972             | 8,136877  | 3,133525  | 5,00    | 2,84       | 2,16  |  |
| 17 | 교육서비스업             |                 | 30,20408 | 24,40551 | 7,692711 | 5,574762             | 2,323512  | 1,360549  | 0,96    | 0,52       | 0,45  |  |
| 18 | 보건업및사회             | 복지서비스업          | 57,61067 | 69,71444 | 5,312806 | 3,829807             | 3,060743  | 2,669929  | 0,39    | 1,03       | -0,64 |  |
| 19 | 문화 및 기타시           | 비스업             | 38,32398 | 37,87965 | 5,69223  | 3,078614             | 2,181489  | 1,166168  | 1,02    | 0,99       | 0,03  |  |



# 🧶 <u>제준대</u>말로 표. R 지역성장률시차분석

b3-ch4-13-rev.R

library(openxlsx)

sample1<-read.xlsx("http://kanggc.iptime.org/book/data/rgda-e.xlsx")</pre>

k<-sample1\$Korea;k2010<-sample1\$K2010;k2017<-sample1\$K2017

> AA

F 11

F 21

F 21

jj<-sample1\$Jeju;jj2010<-sample1\$J2010;jj2017<-sample1\$J2017

A<-matrix(data=NA, nrow=17, ncol=9, byrow=T)

for(i in 1:17) {

for(j in 1:7) {

A[i,1]<-((jj2017[i]-jj2010[i])/jj2010[i])\*100 A[i,2]<-((k2017[i]-k2010[i])/k2010[i])\*100 A[i,3]<-((jj2010[i]/jj2010[1]))\*100 A[i,4]<-((k2010[i]/k2010[1]))\*100

A[i,5]<-((A[i,1]\*A[i,3]))/100

A[i,6]<-((A[i,2]\*A[i,4]))/100

A[i,7]<-(A[i,5]-A[i,6])

```
} }
```

for(i in 1:16) {

```
for(j in 8:9) {
```

```
A[i+1,8]<-(A[i+1,3]-A[i+1,4])*A[i+1,2]/100
A[i+1,9]<-(A[i+1,1]-A[i+1,2])*A[i+1,3]/100
```

}

}

AA

```
CS<-colSums(A[,8:9], na.rm=T)
```

CS

```
A[1,8]<-CS[1];A[1,9]<-CS[2]
```

AA<-round(A,digits=3)

|       | L, ± J  | L,4J   | L, 21   | L 1 7 J | L, 21  | L, VJ  | L 7 4 J | L,0J   | L, 21  |
|-------|---------|--------|---------|---------|--------|--------|---------|--------|--------|
| [1,]  | 61.371  | 37.106 | 100.000 | 100.000 | 61.371 | 37.106 | 24.266  | -0.970 | 25.235 |
| [2,]  | 14.357  | 19.826 | 16.483  | 2.472   | 2.366  | 0.490  | 1.876   | 2.778  | -0.901 |
| [3,]  | 3.900   | 23.166 | 0.219   | 0.204   | 0.009  | 0.047  | -0.039  | 0.003  | -0.042 |
| [4,]  | 63.206  | 35.029 | 3.240   | 30.765  | 2.048  | 10.777 | -8.729  | -9.642 | 0.913  |
| [5,]  | 121.293 | 81.061 | 1.880   | 1.691   | 2.281  | 1.371  | 0.910   | 0.153  | 0.757  |
| [6,]  | 203.795 | 60.461 | 6.783   | 5.108   | 13.824 | 3.088  | 10.736  | 1.013  | 9.723  |
| [7,]  | 44.839  | 25.631 | 9.096   | 8.971   | 4.079  | 2.299  | 1.779   | 0.032  | 1.747  |
| [8,]  | 63.743  | 29.218 | 4.596   | 3.870   | 2.930  | 1.131  | 1.799   | 0.212  | 1.587  |
| [9,]  | 71.173  | 36.558 | 5.960   | 2.608   | 4.242  | 0.954  | 3.288   | 1.225  | 2.063  |
| [10,] | 235.249 | 26.948 | 2.211   | 3.949   | 5.201  | 1.064  | 4.137   | -0.468 | 4.605  |
| [11,] | 34.014  | 19.762 | 5.595   | 6.259   | 1.903  | 1.237  | 0.666   | -0.131 | 0.797  |
| [12,] | 44.624  | 34.459 | 8.765   | 7.930   | 3.911  | 2.733  | 1.179   | 0.288  | 0.891  |
| [13,] | 85.369  | 52.615 | 3.368   | 6.813   | 2.875  | 3.585  | -0.710  | -1.813 | 1.103  |
| [14,] | 62.086  | 45.572 | 13.106  | 6.876   | 8.137  | 3.134  | 5.003   | 2.839  | 2.164  |
| [15,] | 30.204  | 24.406 | 7.693   | 5.575   | 2.324  | 1.361  | 0.963   | 0.517  | 0.446  |
| [16,] | 57.611  | 69.714 | 5.313   | 3.830   | 3.061  | 2.670  | 0.391   | 1.034  | -0.643 |
| [17,] | 38.324  | 37.880 | 5.692   | 3.079   | 2.181  | 1.166  | 1.015   | 0.990  | 0.025  |

F 41

E 51

F 61

F 71

L 01

L 81