

1. 공분산

- 두 변수가 함께 변하는 정도를 측정

 $\mathsf{Cov}(\mathsf{X},\mathsf{Y}) = \frac{\sum_{i=1}^{n} (X_i - \overline{X})(Y_i - \overline{Y})}{n-1}$

공분산의 부호와 크기로 두 변수의 관계를 판단

·부호가 양(+) : 두 변수가 같은 방향으로 변화 즉, X변수가 증가(감소)하면 Y변수도 증가(감소)

예를 들면, 통화량 증가율과 물가 상승률

크기가 클수록 두 변수는 강한 양(+)의 관계를 가짐

· 부호가 음(-) : 두 변수가 반대 방향으로 변화 즉, X변수가 증가(감소)하면 Y변수는 감소(증가)

예를 들면, 경제성장률과 실업률

크기가 작을수록 두 변수는 강한 음(-)의 관계를 가짐

· 크기가 0 : 두 변수는 관계가 없음

- 두 변수의 측정단위에 따라 공분산의 부호는 변하지 않지만 공분산의 크기는 달라짐
 - · 예를 들어 X의 측정단위 변화로 X의 값이 원래보다 10배 증가하면 공분산의 크기도 10배 증가
 - ·X 및 Y의 측정단위 변화로 X 및 Y의 값이 각각 원래보다 10배씩 증가하면 공분산의 크기는 100배 증가
 - 공분산의 크기는 측정단위에 영향을 받기 때문에 동일한 집단이라도 측정단위에 따라 달라지는 한계로 많이 이용되지 않음

2. 상관계수

- 상관분석은 독립변수와 종속변수의 구분이 없는 두 확률변수 간의 선형성의 정도를 측정한 상관계수를 추정하고 검정하는 것을 말함
- 상관계수는 두 변수 간 선형관계의 밀접도를 측정하는 통계량

 $Corr(X,Y) = \rho_{X,Y} = \frac{Cov(X,Y)}{S_X S_Y}$

- 단, S_X, S_Y는 X 및 Y의 표준편차를 각각 나타냄
- 상관계수의 부호와 크기로 두 변수의 관계를 판단
 - ·부호가 양(+) : 두 변수들이 서로 같은 방향으로 변화 즉, X변수가 증가(감소)하면 Y변수도 증가(감소)
 - ·부호가 음(-) : 두 변수들이 서로 반대 방향으로 변화 즉, X변수가 증가(감소)하면 Y변수는 감소(증가)
 - · 크기가 0 : 두 변수는 관계가 없음
- 상관계수는 -1과 1사이의 값을 가짐
 - · 상관계수의 크기가 양(+)이면서 1에 가까워질수록 두 변수는 강한 양(+)의 관계를 가짐
 - · 상관계수의 크기가 음(-)이면서 -1에 가까워질수록 두 변수는 강한 음(-)의 관계를 가짐
 - · 상관계수의 크기가 0이면 두 변수는 관계가 없음
 - 한편, 상관계수는 두 변수의 측정단위 변화에 따라 크기 및 부호가 영향을 받지 않으므로(이를 unit-free 라고 함) 많이 이용됨

- (예) 제3장의 기술통계량 계산 시 사용한 자료(describe.xlsx)로 공분산 및 상관계수를 구해보라
- · http://kanggc.iptime.org/book/data/describe.xlsx로 파일을 다운로드(왼쪽 그림)
- ·데이터-분석-데이터 분석을 실행하면 나타나는 통계 데이터분석 대화상자에서 상관분석(공분산분석)을 실행
- ·이때 계열이름이 있는 셀과 자료가 입력되어 있는 셀을 모두 선택한 후 아래 그림과 같은 상관분석 대화 상자에서 첫째 행 이름표 사용에 🗹

상관 분석		? ×
입력 입력 범위([): 데이터 방향: [기 첫째 햄 이름표 사용(L)	\$B\$1:\$E\$16 E ④ 열(<u>C</u>) ④ 행(<u>R</u>)	확인 취소 도움말(<u>H</u>)
출력 옵션 ○ 출력 범위(<u>O</u>): ● 새로운 워크시트(P): ○ 새로운 통합 문서(<u>W</u>)	E	

모든 공분산이 상관계수와 마찬가지로 양의 부호를 가지고 있고, 대각행렬에 있는 값은 각 변수의 분산

	A	В	C	D	E
1		소비자물가상승률	주택담보대출금리	GDP성장률	GDP디플레이터상승률
2	소비 <mark>자물가</mark> 상승률	1.215822222			
3	주택담보대출금리	1.122755556	1.551715556		
4	GDP성장률	0.279866667	0.781333333	2.869066667	
5	GDP디플레이터상승률	0.568488889	0.615755556	0.1352	1.261155556
6					

모든 상관계수가 양의 부호를 가지고 있고, 소비자물가상승률과 주택담보대출금리 간 상관계수가 0.817로 가장 크고, GDP성장률 과 GDP디플레이터상승률 간 상관계수가 0.071로 가장 작음

	А	В	С	D	E
1		소비자물가상승률	주택담보대출금리	GDP성장률	GDP디플레이터상승률
2	소비자물가상승률	1			
3	주택담보대출금리	0.81741785	1		
4	GDP성장률	0.149846229	0.370305341	1	
5	GDP디플레이터상승률	0.459095054	0.44016748	0.071075847	1

- 상승률, 이자율, 성장률의 측정 단위를 현재 %에서 100으로 나누어 준 후 공분산 및 상관계수를 계산
- 데이터 시트를 마우스 오른쪽을 클릭하여 이동/복사를 선택하면 나타나는 이동/복사 대화상자에서 복사 본 만들기에 ☑하고 확인
- F2셀에 식 =B2/100을 입력하여 %를 100으로 나누어 주고, F2셀을 선택하고 I2셀까지 마우스를 끌어서 클릭하여 복사
- F2셀부터 I2셀까지 블록으로 선택하고 I16셀까지 마우스를 끌어서 클릭하여 복사
- F2셀부터 I16셀까지 블록으로 선택하고 복사를 하고 B2셀에서 마우스 오른쪽을 클릭하여 선택하여 붙 여넣기-값을 선택하고 확인을 클릭
- 공분산과 상관계수를 계산해 보면 공분산의 크기는 원래 크기의 10000분의 1로 축소되고, 상관계수의 크기는 변화 없음

이동/복사		?	×
선택한 시트를 이동합 대상 통합 문서(T):	니다.		
describe.xlsx			\sim
다음 시트의 앞에(<u>B</u>):			
Sheet4 Sheet5 데이터 (2) Sheet1 Sheet2 데이터 메타정보 (끊으로 이도)			
· · · · · · · · · · · · · · · · · · ·			
[확인	추	소

	А	В	С	D	E
1		소비자물가상승률	주택담보대출금리	GDP성장률	GDP디플레이터상승률
2	소비자물가상승률	0.000121582			
3	주택담보대출금리	0.000112276	0.000155172		
4	GDP성장률	2.79867E-05	7.81333E-05	0.000286907	
5	GDP디플레이터상승률	5.68489E-05	6.15756E-05	0.00001352	0.000126116

	А	В	С	D	E
1		소비자물가상승률	주택담보대출금리	GDP성장률	GDP디플레이터상승률
2	소비자물가상승률	1			
3	주택담보대출금리	0.81741785	1		
4	GDP성장률	0.149846229	0.370305341	1	
5	GDP디플레이터상승률	0.459095054	0.44016748	0.071075847	1

b3-ch5-1-rev.R	> (var<-var(df_new))
library(openxlsx)	cpi 1.3026667 1.2029524 0.2998571 0.6090952 interest 1.2029524 1.6625524 0.8371429 0.6597381 gdp 0.2998571 0.8371429 3.0740000 0.1448571 deflator 0.6090952 0.6597381 0.1448571 1.3512381
dt<-read.xisx("http://kanggc.iptime.org/book/data/describe-e.xisx")	
df_dat<-data.matrix(df)	> corr cpi interest gdp deflator
cpi<-df_dat[,2]	cpi 1.0000000 0.8174179 0.14984623 0.45909505 interest 0.8174179 1.0000000 0.37030534 0.44016748
interest<-df_dat[,3]	gdp 0.1498462 0.3703053 1.00000000 0.07107585 doflator 0.4500051 0.4401675 0.07107585 1.00000000
gdp<-df_dat[,4]	der Tator 0.4590951 0.4401675 0.07107585 1.0000000
deflator<-df_dat[,5]	> (var_new<-var(df_new_1))
df_new<-cbind(cpi, interest, gdp, deflator) df_new	<pre>[,1] [,2] [,3] [,4] [1,] 1.302667e-04 1.202952e-04 2.998571e-05 6.090952e-05 [2,] 1.202952e-04 1.662552e-04 8.371429e-05 6.597381e-05 [3,] 2.998571e-05 8.371429e-05 3.074000e-04 1.448571e-05 [4,] 6.090952e-05 6.597381e-05 1.448571e-05 1.351238e-04 > (corr<-cor(df_new_1))</pre>
(var<-var(df_new))	[,1] [,2] [,3] [,4] [1,] 1.000000 0.8174179 0.14984623 0.45909505 [2,] 0.8174179 1.0000000 0.37030534 0.44016748
df_var<-data.matrix(var)	[3,] 0.1498462 0.3703053 1.00000000 0.07107585
(sd<-sqrt(diag(df_var)))	[4,] 0.4590951 0.44018/5 0.0/10/585 1.00000000
corr<-cor(df_new)	
corr	
df_new_1<-cbind(cpi/100, interest/100, gdp/100, deflator/100)	
(var_new<-var(df_new_1))	
(corr<-cor(df_new_1))	

1. 회귀분석

- 회귀분석이란 한 변수와 다른 변수 사이의 관계를 분석하는 방법
- 회귀분석에서 변수는 영향을 주는 독립변수와 영향을 받는 종속변수로 구분
- 독립변수는 확정변수로 가정하고 종속변수는 확률변수로 가정
- 회귀분석의 목적은 독립변수의 주어진 값으로 종속변수의 평균값을 예측
- 2. 보통최소자승법
- 잔차(=실제치-추정치)의 합계가 최소가 되도록 하는 것이 바람직함
- 잔차의 합이 0이 되는 식은 유일하지가 않음
- · 잔차의 제곱의 합이 최소가 되게 하는 회귀식을 구하게 되는데 이러한 추정방법을 보통최소자승법 (Ordinary Least Squares: OLS)이라고 함
- 아래 그림은 단순회귀모형, 추정 회귀선 및 잔차를 나타내 주고 있음

(1) 추정식을 이용한 계산

- (예 1) X 와 Y에 대한 데이터가 아래 좌측과 같을 때 최소자승법으로 추정한 회귀계수를 각각 계산해 보라 · A2부터 A6셀에 X 데이터를 입력하고, B2부터 B6셀에 Y 데이터를 입력
 - · A7에 =sum(a2:a6)을 입력하여 $\sum_{i=1}^{5} X_i$ 를 구하고, A8에 =average(a2:a6)를 입력하여 \overline{X} 를 구함
 - ·동일한 방법으로 B7에 $\sum_{i=1}^{5} Y_i$ 를 구하고, B8에 \overline{X} 를 구함
 - · C2부터 C6셀에 X^2 를 계산하고, D2부터 D6셀에 XY를 계산
 - · C7에 sum(c2:c6)을 입력하여 $\sum_{i=1}^{5} X_i^2$ 를 구하고, D7에 =sum(d2:d6)을 입력하여 $\sum_{i=1}^{5} X_i Y_i$ 를 구함
 - $\cdot \hat{m{eta}}_1 = rac{\sum_{i=1}^5 X_i Y_i \bar{X} \sum_{i=1}^5 Y_i}{\sum_{i=1}^5 X_i^2 \bar{X} \sum_{i=1}^5 X_i}$ 를 계산하기 위해 C10에 =(D7-A8*B7)/(C7-A8*A7)을 입력하면 1.4가 계산됨
 - $\cdot \widehat{m{eta}}_0 = \overline{Y} \cdot \widehat{m{eta}}_1 \overline{X}$ 를 계산하기 위해 C11에 =B8-C10*A8을 입력하면 0.4가 계산됨

	А	В	С	D	E	F
1	Х	Υ	X^2	X*Y		
2	2	4	4	8		
3	3	4	9	12		
4	4	6	16	24		
5	5	6	25	30		
6	6	10	36	60		
7	20	× 30	90	134	×	
8	4	6		$\left\{ \right\}$	=sum(d2:	d6)
9	=sum(a2:a	6) =ave	erage(a2:a6)	=sum(c2:c	:6)	
10		beta1=	1.4			
11		beta0=	0.4			

(2) 행렬추정식을 이용한 계산

- 행렬을 이용하면 회귀계수는 다음과 같이 추정할 수 있음 $\begin{pmatrix} \hat{\beta}_0 \\ \hat{\beta_1} \end{pmatrix} = (X'X)^{-1}X'Y$
 - · A14부터 B18셀에 X 행렬을 만드는데, A14부터 A18까지는 상수항 \hat{eta}_0 추정에 필요한 1을 입력하고, B14부터 B18까지는 \hat{eta}_1 추정에 필요한 X 데이터를 A2부터 A6셀에 복사해 옴
 - · E14부터 H15셀에 X의 전치행렬을 만들고, A22부터 B23에 X'X , A22부터 B23에 (X'X)⁻¹, A26부터 A27에 X'Y를 만듦
 - · D26부터 D27을 선택하고 =MMULT(D22:E23,A26:A27) 입력하여 Ctrl + shift + Enter를 누르면 회귀계 수를 계산해 줌

	Α	В	С	D	E	F	G	H
1	Х	Υ	X^2	X*Y				
12								
13	Х			Χ'				
14	1	2		1	1	1	1	1
15	1	3		2	3	4	5	6
16	1	4						
17	1	5						
18	1	6						
19								
20								
21	X'X			(X'X)^-1				
22	5	20		1.8	-0.4			
23	20	90		-0.4	0.1			
24								
25	X'Y							
26	30		beta0=	0.4				
27	134		beta1=	1.4				

(3) 데이터 분석을 이용한 계산

- 데이터-분석-데이터 분석을 실행하면 나타나는 통계 데이터분석 대화상자에서 회귀분석을 실행하면 아래
 좌측 그림과 같은 회귀분석 대화상자가 나타남
- 먼저 종속변수의 데이터 범위를 나타내는 Y축 입력 범위에 \$B\$2:\$B\$6을 입력
- 독립변수의 데이터 범위를 나타내는 X축 입력 범위에 \$A\$2:\$A\$6을 입력
- 회귀 분석의 결과를 인쇄할 영역을 나타내는 출력 범위에 \$B\$29를 입력하고 확인을 누르면 아래 우측 그 림과 같은 회귀 분석 결과를 출력

회귀 분석	?	×
입력 Y축 입력 범위(Y): X축 입력 범위(X): □ 이름표(L) □ 신뢰 수준(F) 95 %	확 취 도움	인 소 말(<u>H</u>)
출력 옵션 ○ 출력 범위(<u>0</u>): ⓒ 새로운 워크시트(<u>P</u>): ○ 새로운 통합 문서(<u>₩</u>) 잔차 □ 잔차(<u>B</u>) □ 전차(<u>C</u>) □ 전차(<u>C</u>)		
□ 표준 전자(1) □ 전작업도(1) 정규 확률 □ 정규 확률도(<u>N</u>)		

	А	В	С	D	E	F	G	Н	1	J	
1	Х	γ	X^2	X*Y							
29		요약 출력									
30											
31		회귀분석	ț 통계량								
32		다중 상관기	0.903696								
33		결정계수	0.816667								
34		조정된 결혼	0.755556								
35		표준 오차	1.21106								
36		관측수	5								
37											
38		분산 분석									
39			자유도	제곱합	제곱 평균	F비	유의한 F				
40		회귀	1	19.6	19.6	13.36364	0.035353				
41		잔차	3	4.4	1.466667						
42		계	4	24							
43											
44			계수	표준 오차	t 통계량	P-값	하위 95%	상위 95%	하위 95.0%	상위 95.0%	
45		Y절편	0.4	1.624808	0.246183	0.821423	-4.77086	5.570863	-4.77086	5.570863	
46		X 1	1.4	0.382971	3.655631	0.035353	0.181216	2.618784	0.181216	2.618784	
47											

- (예 2) 소비(단위 : 10억 원)와 소득(단위 : 10억 원)의 자료(consumption.xlsx)로 소비함수를 추정하고 예 측하는 회귀분석을 해보라
- · http://kanggc.iptime.org/book/data/consumption.xlsx로 파일을 다운로드(하단 좌측)
- ·데이터-분석-데이터 분석을 실행하여 통계 데이터분석 대화상자에서 회귀분석을 선택하면 나타나는 회귀 분석 대화상자에서 Y축 입력범위에 \$C\$2:\$C\$18을 선택하고, X축 입력 범위에 \$B\$2:\$B\$18을 선택하여 확인을 클릭하면 하단 우측 그림과 같은 소비함수 추정 결과가 나타남
- · 2017년 소비를 예측하기 위하여 B21셀에 식 =b17+b18*1700000을 입력하면 2017년 소비 예측치가 1099983인 것으로 계산됨

	Α	В	С
1	연도	국민총소득	최종소비지출
2	2000	630,614.30	413,461.20
3	2001	683,447.10	460,668.30
4	2002	758,862.60	515,616.00
5	2003	807,778.00	535,967.40
6	2004	874,238.70	562,020.30
7	2005	912,608.60	602,345.40
8	2006	962,446.60	643,408.00
9	2007	1,040,091.80	691,740.40
10	2008	1,104,414.30	740,804.60
11	2009	1,148,981.80	769,588.60
12	2010	1,266,579.80	819,821.20
13	2011	1,340,529.80	873,522.60
14	2012	1,391,595.50	911,938.20
15	2013	1,439,644.40	942,267.20
16	2014	1,490,763.90	972,924.90
17	2015	1,568,383.10	1,006,005.60
18	2016	1,639,066.50	1,047,482.40

	Α	В	С	D	E	F	G	Н	- I
1	요약 출력								
2									
3	회귀분석	넊 통계량							
4	다중 상관기	0.99871							
5	결정계수	0.997421							
6	조정된 결	0.99725							
7	표준 오차	10600.86							
8	관측수	17							
9									
10	분산 분석								
11		자유도	제곱합	제곱 평균	F비	유의한 F			
12	회귀	1	6.52E+11	6.52E+11	5802.256	7.81E-21			
13	잔차	15	1.69E+09	1.12E+08					
14	계	16	6.54E+11						
15									
16		계수	표준 오차	t 통계량	P-값	하위 95%	상위 95%	하위 95.0%	상위 95.0%
17	Υ절편	30545.6	9609.735	3.17861	0.006231	10062.94	51028.27	10062.94	51028.27
18	X 1	0.629081	0.008259	76.17254	7.81E-21	0.611478	0.646684	0.611478	0.646684
19									
20		2017년 소	Ы						
21		1099983							

J 제조대학교 Ⅱ. R 단순회귀분석

제주대학교 JEJU NATIONAL UNIVERSITY

```
b3-ch5-4.R
library(openxlsx)
df<-read.xlsx("http://kanggc.iptime.org/book/data/consum
ption-e.xlsx")
vear<-df[.1]
adp < -df[.2]
consumption<-df[,3]
y<-ts(gdp, start=c(2000), frequency=1)</pre>
                                                      Coefficients:
c<-ts(consumption, start=c(2000), frequency=1)
                                                                    Estimate Std. Error t value Pr(>|t|)
                                                      (Intercept) 3.055e+04 9.610e+03
                                                                                             3.179 0.00623 **
                                                                   6.291e-01 8.259e-03 76.173 < 2e-16 ***
                                                      v
n < -length(y)
                                                      signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
ny < -y[2:n]
                                                      Residual standard error: 10600 on 15 degrees of freedom
                                                      Multiple R-squared: 0.9974, Adjusted R-squared: 0.9972
nc < -c[2:n]
                                                      F-statistic: 5802 on 1 and 15 DF, p-value: < 2.2e-16
lagc < -c[1:n-1]
Im_s < -Im(c \sim y)
ols_s<-summary(Im_s)
                                                      > v0<-1700000
ols_s 🖊
                                                      > (chat_s<-summary(lm_s)$coef[1]+summary(lm_s)$coef[2]*y0)</pre>
y0<-1700000
                                                      [1] 1099983
(chat_s<-summary(Im_s)$coef[1]+summary(Im_s)$coef[2]
*v0) -
다음 장에 계속
```


J 제즀따라교 I. Excel 다중회귀분석

1. 다중회귀모형

- 다중회귀모형이란 설명변수가 2개 이상인 회귀모형을 말함
- 독립변수 또는 종속변수의 시차변수가 설명변수로 포함된 동태모형일 경우 회귀분석에서 다음 사항에 유 의해야 함
 - ·시차변수 데이터는 기존의 독립변수 또는 종속변수의 데이터를 이용
 - · 회귀모형의 추정 시 사용되는 독립변수 및 종속변수의 관측치 개수를 동일하게 해야 함
- 2. 보통최소자승법
- 좌측 그림은 단순회귀모형 및 보통최소자승법을 시각적으로 보여 주고 있음 · 단순회귀모형 : $Y_i = \beta_0 + \beta_1 X_i + \varepsilon_t$
- 우측 그림은 기업의 매출액(sales)은 홍보비(advt) 및 연구개발비(randd)의 함수라는 다중회귀모형 및 보통최소자승법을 시각적으로 보여 주고 있음 · 다중회귀모형 : sales_i = β_0 + β_1 advt_i + β_2 randd_i + ε_t

(예) 소비(단위 : 10억 원)와 소득(단위 : 10억 원)의 자료(consumption.xlsx)로 현재소비(*C_t*)는 현재소득 (*Y_t*)과 전년도 소비(*C_{t-1}*)의 함수라는 다중회귀모형을 추정하고, 2017년도 소득이 1700조라고 할 때 2017년도 소비를 예측해 보라

 $C_t = \beta_0 + \beta_1 Y_t + \beta_2 C_{t-1} + \varepsilon_t$

- · http://kanggc.iptime.org/book/data/consumption.xlsx로 파일을 다운로드
- · 위의 다중회귀모형은 현재소비(C_t)의 시차변수인 전년도 소비(C_{t-1})가 독립변수에 포함되어 있으므로 이 데이터를 만들어야 함
- · E2셀부터 E18셀까지 현재소득(Y_t)을 복사하고, 전년도 소비(C_{t-1})를 만들기 위해 F3셀에 식 =C2를 입력하고, 이를 F18셀까지 복사
- · 위 모형은 동태모형이므로 회귀분석에서 2001년부터 2016년까지 데이터가 이용되므로 데이터-분석-데 이터 분석을 실행하여 통계 데이터분석 대화상자에서 회귀분석을 선택하면 나타나는 회귀분석 대화상자 에서 Y축 입력범위에 \$C\$3:\$C\$18을 선택하고, X축 입력 범위에 \$E\$3:\$F\$18을 선택하여 확인을 클릭하 면 다음 그림과 같은 소비함수 추정 결과가 나타남

· 2017년 소비를 예측하기 위하여 B22셀에 식 =B17+B18*1700000+B19*1047482를 입력하면 2017년 소비 예측치가 1092084임

	A	B	C	D	E	F	G	Н	
1	요약 출력								
2									
3	회귀분석	통계량							
4	다중 상관기	0.999157							
5	결정계수	0.998315							
6	조정된 결	0.998056							
7	표준 오차	8390.698							
8	관측수	16							
9									
10	분산 분석								
11		자유도	제곱합	제곱 평균	F비	유의한 F			
12	회귀	2	5.42E+11	2.71E+11	3851.938	9.38E-19			
13	잔차	13	9.15E+08	70403808					
14	계	15	5.43E+11						
15									
16		계수	표준 오차	t 통계량	P-값	하위 95%	상위 95%	하위 95.0%	상위 95.0%
17	Y절편	40295.23	8523.49	4.727551	0.000395	21881.35	58709.11	21881.35	58709.11
18	X 1	0.33455	0.105585	3.168532	0.007403	0.106447	0.562653	0.106447	0.562653
19	X 2	0.461157	0.167887	2.74683	0.016638	0.098459	0.823855	0.098459	0.823855
20									
21			2017년 소년	비					
22			1092084						

🦓 제조대학교 표. R 다중회귀분석

b3-ch5-4.R						
<pre>library(openxlsx) df<-read.xlsx("http://kanggc.iptime.org/book/data/consum ption-e.xlsx") year<-df[,1] gdp<-df[,2] consumption<-df[,3] y<-ts(gdp, start=c(2000), frequency=1) c<-ts(consumption, start=c(2000), frequency=1) n<-length(y) (ny<-y[2:n]) (nc<-c[2:n]) (lagc<-c[1:n-1])</pre>	<pre>> (data<-cbind(ny,nc,lagc))</pre>					
<pre>(data<-cbind(ny,nc,lagc)) lm_s<-lm(c~y) ols_s<-summary(lm_s) ols_s y0<-1700000 (chat_s<-summary(lm_s)\$coef[1]+summary(lm_s)\$coef[2] *y0) lm_m<-lm(nc~ny+lagc) ols_m<-summary(lm_m) ols_m (chat_m<-summary(lm_m)\$coef[1]+summary(lm_m)\$coef[2]*y0+summary(lm_m)\$coef[3]*c[17])</pre>	Coefficients: Estimate Std. Error t value Pr(> t) (Intercept) 4.030e+04 8.523e+03 4.728 0.000395 *** ny 3.346e-01 1.056e-01 3.169 0.007403 ** lagc 4.612e-01 1.679e-01 2.747 0.016638 * Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 Residual standard error: 8391 on 13 degrees of freedom Multiple R-squared: 0.9983, Adjusted R-squared: 0.9981 F-statistic: 3852 on 2 and 13 DF, p-value: < 2.2e-16					
> (chat_m<-summary(lm_m)\$ [1] 1092084	coet[1]+summary(Im_m)\$coet[2]*y0+summary(Im_m)\$coef[3]*c[17])					