

시 제주대학교 I. 모형의 기초

1. 모형의 가정

- 거시경제학에서는 복잡한 현실의 경제를 단순화시키기 위하여 생산물(상품)시장, 화폐시장, 노동시장, 금 융시장 등 4개의 시장으로 구성되어 있다고 가정
- 각 시장에서 수요와 공급이 일치할 때 균형이 달성된다고 봄

2. 모형의 변수

- 모형의 변수는 내생변수 및 외생변수로 구성
- 내생변수(endogenous variable) : 모형 내에서 결정되는 변수
- 외생변수(exogenous variable) : 모형 외부에서 결정되어 모형에 주어지는 변수

3. 비교정태분석 및 동태분석

- 비교정태분석(comparative static analysis) : 외생변수의 값이 변할 때 내생변수의 균형 값(최종 균형값)
 이 외생변수가 바꾸기 이전(최초 균형값)과 비교하여 어떻게 변하는 지를 단순히 비교 즉, 최초 균형값과 최종 균형값의 증감 만을 비교
- 동태분석(dynamic analysis) : 내생변수의 최초 균형값과 외생변수 변화 이후 내생변수의 최종 균형값을 비교하는데 최초 균형에서 최종 균형에 도달하는 시간과 경로를 고려하여 분석
- 4. 부분균형모형 및 일반균형모형
- 부분균형모형(partial equilibrium model) : 다른 시장은 변화가 없다고 가정하고 특정 시장의 균형을 분석
- 일반균형모형(general equilibrium model) : 모든 시장이 서로 영향을 주고받는 것을 고려하면서 모든 시 장의 균형을 동시에 분석

제주대학교 Ⅲ. 모형의 종류

- 1. 단순모형(생산물시장의 균형)
- 생산물에 대한 수요와 생산물에 대한 공급이 일치할 때 생산물시장의 균형이 달성
- 균형에서 결정되는 것이 무엇이고, 균형이 어떠한 요인에 의해 변하는 지 등 비교정태분석을 하는 모형을 케인즈의 단순모형이라고 함

단순모형 : Y = C(Y)+I+G+X-M(Y)

단, Y는 국민소득, C는 소비(Consumption), I는 투자(Investment),

G는 정부지출(Government expenditure), X는 수출(eXport), M은 수입(iMport)

- 내생변수 : Y, C, M
- 외생변수 : I, G, X

2. IS-LM모형(생산물시장 및 화폐시장의 균형)

- 생산물시장 균형 외에 화폐수요와 화폐공급이 일치할 때 달성되는 화폐시장의 균형을 동시에 고려하는 모형을 IS-LM모형이라고 함
- 이 모형을 이용하면 생산물시장 및 화폐시장에서 각각 결정되는 것이 무엇이고, 이것들이 다른 시장에 어떤 경로를 통해 영향을 주고받는 지, 그리고 두 시장의 동시 균형이 어떠한 요인에 의해 변하는 지 등 비교정태분석을 할 수 있음
 - IS 균형 : Y = C(Y)+I(r)+G+X-M(Y)

LM 균형 : $\frac{M_d(Y,r)}{\overline{p}} = M_s$

단, Y는 국민소득, C는 소비(Consumption), I는 투자(Investment),

G는 정부지출(Government expenditure), X는 수출(eXport), M은 수입(iMport),

r은 이자율, P는 물가, M_s는 화폐공급, M_d는 화폐수요

- 내생변수 : Y, r, C, M, I, *M_d*
 - 외생변수 : G, X, M_s, P

A. IS-LM모형과 총수요곡선의 도출

- IS-LM모형에서 물가가 변하는 경우 총수요곡선을 도출할 수 있음
- B. 노동시장의 균형 및 총공급곡선의 도출
- 노동시장 역시 노동수요와 노동공급이 일치할 때 균형이 달성되는데 균형에서 결정되는 것이 무엇이고, 균형이 어떠한 요인에 의해 변하는 지 등 비교정태분석을 할 수 있음
- 노동시장에서 결정되는 균형 노동고용량과 총생산함수를 이용하면 총공급곡선을 도출할 수 있음 노동시장 균형 : Pf'(L) = P^eg(L) 총생산함수 : F(K̄, L)
 단, P는 물가, P^e는 예상물가, L은 노동고용량
- 3. AD-AS모형(생산물시장, 화폐시장 및 노동시장의 균형)
 - 총수요곡선과 총공급곡선에 의해 균형의 결정과 변화를 살펴볼 수 있는 것이 총수요-총공급모형

🔏 제준때함교 🎞. 시장과 거시경제모형

총수요-총공급모형은 생산물시장, 화폐시장, 노동시장 등 3개 시장의 동시균형을 분석한 모형임에도 불구 하고 일반균형모형인 이유는 N개 시장(여기서는 N=4임)이 있을 때 N-1개 시장이 균형을 이루면 나머지 시장은 자동적으로 균형이 달성된다는 왈라스 법칙(Walras' Law) 때문

Excel 및 R : 단순모형

1. 모형

- 생산물시장의 균형을 나타내 주는 단순모형의 경우 생산물에 대한 수요와 생산물에 대한 공급이 일치하는 균형에서 균형국민소득이 결정되고, 이에 따라 소비와 수입도 결정되는데 이를 모형 내에서 결정되는 내생변수라고 함
- 투자, 정부지출, 수출은 모형 밖에서 결정되어 모형에 주어지므로 외생변수라고 함
- 한편, 투자, 정부지출 등 외생변수가 변할 때 내생변수가 어떻게 변하는 지를 분석하는 것을 비교정태분석 이라고 함
- 특히, 외생변수 변화의 크기에 대한 국민소득 변화의 크기를 승수(multiplier)라고 함
- 2. 모형의 예(국내모형)

Y = C + I + G $C = 200 + 0.75 Y_{a}$ $Y_{d} = Y - T$ T = 100 I = 40G = 100

- 이 모형에서 Y는 국민소득, Y_d는 가처분 국민소득, C는 소비, T는 조세, I는 투자(독립투자), G는 정부지출 을 나타냄
- 내생변수 : Y, Y_d, C
- 외생변수 : T, I, G

(1) 모형의 해 구하기

- 이 모형을 다음과 같이 나타냄

 $\begin{array}{l} Y - C - I - G = 0 \\ C - 0.75 Y_d = 200 \\ Y_d - Y + T = 0 \\ T = 100 \\ I = 40 \\ G = 100 \end{array}$

- 이를 AX = H로 나타내면 A, X 및 H는 다음과 같음

$$A = \begin{bmatrix} 1 & -1 & 0 & 0 & -1 & -1 \\ 0 & 1 & -0.75 & 0 & 0 & 0 \\ -1 & 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix} \qquad X = \begin{bmatrix} Y \\ C \\ Y_d \\ T \\ I \\ G \end{bmatrix} \qquad H = \begin{bmatrix} 0 \\ 200 \\ 0 \\ 100 \\ 40 \\ 100 \end{bmatrix}$$

- 단순모형의 해는 X = A^{-1} H와 같이 구할 수 있음
- A행렬은 A2부터 F7까지 입력하고, H벡터는 H2부터 H7까지 입력하며, 해를 구할 X벡터의 변수명을 H11 부터 H16까지 입력
- 아래 그림과 같이 A행렬과 H벡터를 입력한 후 A행렬의 역행렬의 결과가 구해질 영역(A11부터 F16)을 마우스로 끌어서 연속되게 선택하고 =MINVERSE(A2:F7)의 식을 입력하고 Ctrl+Shift+Alt를 동시에 눌러 역행렬을 구함
- 다음으로 연립방정식의 해를 구할 영역(I11부터 I16)을 마우스로 끌어서 연속되게 선택하고 =MMULT(A11:F16,H2:H7)의 식을 입력하고 Ctrl+Shift+Alt를 동시에 눌러 해를 구함
- 단순모형에서 균형국민소득의 결정을 그림으로 그려보면 아래 우측 그림과 같음

(2) 비교정태분석(투자)

- 투자(I)가 40에서 80으로 증가될 경우 투자지출승수를 구할 수 있는데 이 경우 모형은 다음과 같음 *Y- C- I- G*=0 *C-* 0.75 *Y*_d = 200 *Y*_d - *Y*+ *T*=0 *T*= 100 *I*= 80 *G*= 100
 - 투자(I)를 종전의 40에서 40이 증가한 80을 대입하여 해를 다시 구하면 국민소득(Y)은 1060에서 160이 증가한 1220이 됨
 - 투자지출승수는 투자증가분 분의 국민소득증가분 즉, $\frac{\Delta Y}{\Lambda I} = \frac{160}{40} = 4$ 이므로 투자지출승수는 4가 됨
 - 투자지출 증가에 따른 균형국민소득의 변화를 그림으로 그려보면 아래 우측과 같음

(3) 비교정태분석(정부지출)

- 정부지출(G)이 100에서 200으로 증가될 경우 정부지출승수를 구할 수 있는데 모형은 다음과 같음 *Y*-*C*-*I*-*G*=0 *C*-0.75 *Y*_d = 200 *Y*_d-*Y*+*T*=0 *T*=100 *I*=40 *G*=200
 - 투자(I)는 원래 40으로 수정하고, 정부지출(G)을 종전의 100에서 100이 증가한 200을 대입하여 해를 다 시 구하면 국민소득(Y)은 1060에서 400이 증가한 1460이 됨
 - 정부지출승수는 정부지출증가분 분의 국민소득증가분 즉, $\frac{\Delta Y}{\Delta G} = \frac{400}{100} = 4이므로 정부지출승수는 4가 되고, 투자지출승수와 같음$

	А	В	С	D	E	F	G	Н	I.	J	К
1	Υ	С	Yd	Т	l i	G		상수(H)			
2	1	-1	0	0	-1	-1		0			
3	0	1	-0.75	0	0	0		200			
4	-1	0	1	1	0	0		0			
5	0	0	0	1	0	0		100			
6	0	0	0	0	1	0		40			
7	0	0	0	0	0	1		200	>	G 증가분=	=100
8											
9											
10								해(X)			
11	4	4	3	-3	4	4		Y=	1460	>	Y 증가분=400
12	3	4	3	-3	3	3		C=	1220		
13	4	4	4	-4	4	4		Yd=	1360		
14	0	0	0	1	0	0		T=	100		
15	0	0	0	0	1	0		=	40		
16	0	0	0	0	0	1		G=	200		

」제주대학교 Ⅱ. R 단순모형

🌡 제조대학교 I. Excel IS-LM모형

1. 모형

- 생산물시장과 화폐시장의 동시 균형을 나타내 주는 IS-LM모형의 경우 생산물시장의 균형을 나타내는 IS 곡선과 화폐시장의 균형을 나타내는 LM곡선이 만나는 점에서 균형이자율과 균형국민소득이 결정되고, 이에 따라 소비, 수입 및 투자도 결정되므로 내생변수이고, 정부지출, 수출, 화폐공급은 외생변수
- 한편, 정부지출, 투자 등 외생변수가 변할 때 내생변수가 어떻게 변하는 지를 분석하는 것을 비교정태분석
 이라고 하는데 특히, 정부지출 변화의 크기에 대한 국민소득 변화의 크기를 정부지출 승수라고 함
- 2. 모형의 예(국내모형)

 $\begin{array}{l} Y = C + I + G \\ M_d = M_s \\ C = 200 + 0.75 (Y - T) \\ I = 200 - 25r \\ T = 100 \\ G = 100 \\ \frac{M_d}{P} = Y - 100r(P = 27 + 73) \\ M_s = 1000 \end{array}$

- 내생변수 : Y, C, I, r, M_d
- 외생변수 : T, G, P, M_s
- (1) 모형의 해 구하기
- 이 모형을 다음과 같이 나타냄

```
Y - C - I - G = 0

M_d - M_s = 0

C - 0.75 Y + 0.75 T = 200

I + 25r = 200

G = 100

T = 100

M_d = 2 Y - 200r

M_s = 1000
```

- IS-LM모형의 해 역시 X = A^{-1} H와 같이 구할 수 있음
- 아래 그림과 같이 A행렬과 H벡터를 입력한 후 A행렬의 역행렬의 결과가 구해질 영역(A11부터 H18)을 마우스로 끌어서 연속되게 선택하고 =MINVERSE(A2:H9)의 식을 입력하고 Ctrl+Shift+Alt를 동시에 눌러 역행렬을 구함
- 다음으로 연립방정식의 해를 구할 영역(K11부터 K18)을 마우스로 끌어서 연속되게 선택하고 =MMULT(A11:H18,J2:J9)의 식을 입력하고 Ctrl+Shift+Alt를 동시에 눌러 해를 구함
- IS-LM모형에서 균형국민소득과 균형이자율의 결정을 그림으로 그려보면 아래 우측 그림과 같음

	А	В	С	D	E	F	G	Н	I.	J	K	r
1	Y	С	I	G	Т	r	Md	Ms		상수		
2	1	-1	-1	-1	0	0	0	0		() 균형	
3	0	0	0	0	0	0	1	-1		() 균형	IS
4	-0.75	1	0	0	0.75	0	0	0		200)	LM
5	0	0	1	0	0	25	0	0		200)	
6	0	0	0	1	0	0	0	0		100)	
7	0	0	0	0	1	0	0	0		100)	
8	-2	0	0	0	0	200	1	0		()	
9	0	0	0	0	0	0	0	1		1000)	균형이자율(re)=6
10												
11	2	0.25	2	2	2	-1.5	-0.25	0.25		Y=	1100	
12	1.5	0.1875	2.5	1.5	1.5	-1.875	-0.1875	0.1875		C=	950	
13	-0.5	0.0625	-0.5	0.5	-0.5	0.375	-0.0625	0.0625		=	50	
14	0	0	0	0	1	0	0	0		G=	100	
15	0	0	0	0	0	1	0	0		T=	100	
16	0.02	-0.0025	0.02	0.02	0.02	-0.015	0.0025	-0.0025		r=	6	Y
17	0	1	0	0	0	0	0	1		Md=	1000	그혀구미소도(//)-1100
18	0	0	0	0	0	0	0	1		Ms=	1000	균영국민조득(Ye)=1100

(2) 비교정태분석(정부지출)

· 정부지출(G)이 100에서 150으로 증가될 경우 비교정태분석을 수행하여 균형국민소득과 균형이자율의 변 화를 살펴보고, 정부지출승수를 구할 수 있는데 모형은 다음과 같음

```
\begin{array}{l} Y = C + I + G \\ M_d = M_s \\ C = 200 + 0.75(Y - T) \\ I = 200 - 25r \\ T = 100 \\ G = 150 \\ \frac{M_d}{P} = Y - 100r(P = 2773) \\ M_s = 1000 \end{array}
```

- 정부지출(G)을 종전의 100에서 50이 증가한 150을 대입하여 해를 다시 구하면 균형국민소득은 1100에 서 100이 증가한 1200이 되고, 균형이자율은 6%에서 1%p 상승한 7%가 되는 것을 확인할 수 있음
- 정부지출승수는 정부지출증가분 분의 국민소득증가분 즉, $\frac{\Delta Y}{\Lambda G} = \frac{100}{50} = 2$ 가 됨
- 정부지출 증가에 따른 균형국민소득 및 균형이자율의 변화를 그림으로 그려보면 아래 우측과 같음

(3) 비교정태분석(통화량)

통화량이 1000에서 1200으로 증가하면 비교정태분석을 수행하여 균형국민소득과 균형이자율의 변화를 살펴볼 수 있는데 모형은 다음과 같음

$$Y = C + I + G$$

$$M_d = M_s$$

$$C = 200 + 0.75(Y - T)$$

$$I = 200 - 25r$$

$$T = 100$$

$$G = 100$$

$$\frac{M_d}{P} = Y - 100r(P = 2773)$$

$$M_s = 1200$$

정부지출은 원래 100으로 수정하고, 통화량을 종전의 1000에서 200이 증가한 1200을 대입하여 해를 다시 구하면 균형국민소득은 1100에서 50이 증가한 1150이 되고, 균형이자율은 6%에서 0.5%p 하락한 5.5%가 되는 것을 확인할 수

• 통화량 증가에 따른 균형국민소득 및 균형이자율의 변화를 그림으로 그려보면 아래 우측과 같음

🖉 제줏대학교 표. R IS-LM모형

b3-ch6-2.R	> H [.1]
library(openxlsx)	
dat<-read.xlsx("http://kanggc.iptime.org/book/data/macro-	[3,] 200
islm-e.xlsx")	
A<-as.matrix(dat)	[6,] 100
H<-matrix(c(0,0,200,200,100,100,0,1000), nrow=8)	[7,] 0 [8,] 1000
Н	
X<-t(solve(A)%*%H)	> XV Y= C= I= G= T= r= Md= Ms=
XV<-as.vector(X)	1100 950 50 100 100 6 1000 1000
names(XV)<-c("Y=","C=","I=","G=","T=","r=","Md=","Ms=")	> GXV
XV	Y= C= I= G= T= r= Md= Ms=
GH<-matrix(c(0,0,200,200,150,100,0,1000), nrow=8)	
GX<-t(solve(A)%*%GH)	
GXV<-as.vector(GX)	> GM dY/dG=
names(GXV)<-c("Y=","C=","I=","G=","T=","r=","Md=","Ms=")	2
GXV	
GM<-(GXV[1]-X[1,1])/(GXV[4]-H[5,1])	> MXV
names(GM)<-c("dY/dG=")	Y= C= I= G= T= r= Md= Ms= 1150.0 987.5 62.5 100.0 100.0 5.5 1200.0 1200.0
GM	
MH<-matrix(c(0,0,200,200,100,100,0,1200), mrow=8)	> MM
MX<-t(solve(A)%*%MH)	dy/dm=
MXV<-as.vector(MX)	0.25
names(MXV)<-c("Y=","C=","I=","G=","T=","r=","Md=","Ms=")	
MXV	
MM<-(MXV[1]-X[1,1])/(MXV[8]-H[8,1])	
names(MM)<-c("d¥/dM=")	
MM	

- 1. 모형
- 2개국 개방모형을 가정할 때 각 국의 거시경제 균형조건, 소비함수, 수입함수, 수출함수는 다음과 같음
- (1) 각 국의 거시경제 균형조건 $Y_1 = C_1 + I_1 + G_1 + X_1 - M_1$ $Y_2 = C_2 + I_2 + G_2 + X_2 - M_2$
- (2) 각 국의 소비함수
 - $C_1 = a_1 + b_1 Y_1$
 - $C_2 = a_2 + b_2 Y_2$
- (3) 각 국의 수입함수

 $M_1 = m_{12}Y_1$
 $M_2 = m_{21}Y_2$

 단, m_{ij} 는 i국의 j국 상품에 대한 한계수입성향
- (4) 각 국의 수출함수 X₁= m₂₁Y₂ X₂= m₁₂Y₁

2. 모형의 예(2개국 개방모형)

$$\begin{split} Y_1 &= C_1 + I_1 + G_1 + X_1 - M_1 \\ Y_2 &= C_2 + I_2 + G_2 + X_2 - M_2 \\ C_1 &= 350 + 0.65 \, Y_1 \\ C_2 &= 450 + 0.6 \, Y_2 \\ I_1 &= 1200 \\ I_2 &= 600 \\ G_1 &= 450 \\ G_2 &= 280 \\ M_1 &= 0.2 \, Y_1 \\ M_2 &= 0.3 \, Y_2 \\ X_1 &= 0.3 \, Y_2 \\ X_2 &= 0.2 \, Y_1 \end{split}$$

내생변수: Y₁, C₁, X₁, M₁ Y₂, C₂, X₂, M₂
외생변수: I₁, G₁, I₂, G₂

(1) 모형의 해 구하기

- 2개국 모형의 해 역시 X = A^{-1} H와 같이 구할 수 있음
- <u>http://kanggc.iptime.org/book/data/</u>macro-country-e.xlsx로 파일을 다운로드
- 그림과 같이 A행렬을 수정하고 H벡터를 입력한 후 A행렬의 역행렬의 결과가 구해질 영역(B15부터 M26) 을 마우스로 끌어서 연속되게 선택하고 =MINVERSE(B2:M13)의 식을 입력하고 Ctrl+Shift+Alt를 동시에 눌러 역행렬을 구한다.
- 다음으로 연립방정식의 해를 구할 영역(P15부터 P26)을 마우스로 끌어서 연속되게 선택하고 =MMULT(B15:M26,O2:O13)의 식을 입력하고 Ctrl+Shift+Alt를 동시에 눌러 해를 구함

	А	В	С	D	E	F	G	Н	- I	J	K	L	М	N	0	Р
1		Y1	Y2	C1	C2	11	12	G1	G2	M1	M2	X1	X2		상수	
2	Y1	1	0	-1	0	-1	0	-1	0	1	0	-1	0		0	
3	Y2	0	1	0	-1	0	-1	0	-1	0	1	0	-1		0	
4	C1	-0.65	0	1	0	0	0	0	0	0	0	0	0		350	
5	C2	0	-0.6	0	1	0	0	0	0	0	0	0	0		450	
6	11	0	0	0	0	1	0	0	0	0	0	0	0		1200	
7	12	0	0	0	0	0	1	0	0	0	0	0	0		600	
8	G1	0	0	0	0	0	0	1	0	0	0	0	0		450	
9	G2	0	0	0	0	0	0	0	1	0	0	0	0		280	
10	M1	-0.2	0	0	0	0	0	0	0	1	0	0	0		0	
11	M2	0	-0.3	0	0	0	0	0	0	0	1	0	0		0	
12	X1	0	-0.3	0	0	0	0	0	0	0	0	1	0		0	
13	X2	-0.2	0	0	0	0	0	0	0	0	0	0	1		0	
14																
15		2.153846	0.923077	2.153846	0.923077	2.153846	0.923077	2.153846	0.923077	-2.15385	-0.92308	2.153846	0.923077		Y1=	5535
16		0.615385	1.692308	0.615385	1.692308	0.615385	1.692308	0.615385	1.692308	-0.61538	-1.69231	0.615385	1.692308		Y2=	3482
17		1.4	0.6	2.4	0.6	1.4	0.6	1.4	0.6	-1.4	-0.6	1.4	0.6		C1=	3948
18		0.369231	1.015385	0.369231	2.015385	0.369231	1.015385	0.369231	1.015385	-0.36923	-1.01538	0.369231	1.015385		C2=	2539
19		0	0	0	0	1	0	0	0	0	0	0	0		11=	1200
20		0	0	0	0	0	1	0	0	0	0	0	0		12=	600
21		0	0	0	0	0	0	1	0	0	0	0	0		G1=	450
22		0	0	0	0	0	0	0	1	0	0	0	0		G2=	280
23		0.430769	0.184615	0.430769	0.184615	0.430769	0.184615	0.430769	0.184615	0.569231	-0.18462	0.430769	0.184615		M1=	1107
24		0.184615	0.507692	0.184615	0.507692	0.184615	0.507692	0.184615	0.507692	-0.18462	0.492308	0.184615	0.507692		M2=	1044
25		0.184615	0.507692	0.184615	0.507692	0.184615	0.507692	0.184615	0.507692	-0.18462	-0.50769	1.184615	0.507692		X1=	1044
26		0.430769	0.184615	0.430769	0.184615	0.430769	0.184615	0.430769	0.184615	-0.43077	-0.18462	0.430769	1.184615		X2=	1107

(2) 비교정태분석(정부지출)

제1국의 정부지출(G1)이 450에서 550으로 증가할 경우 비교정태분석을 통해 국가별 균형국민소득의 변
 화를 살펴보고, 국가별 정부지출승수를 구할 수 있는데 모형은 다음과 같음

$V = \alpha + I + \alpha + V = M$		Α	В	С	D	E	F	G	н	- I	J	К	L	м	N	0	Р	Q	R	S
$Y_1 = C_1 + I_1 + G_1 + X_1 - M_1$	1		Y1	Y2	C1	C2	11	12	G1	G2	M1	M2	X1	X2	상숙	2				
$\mathbf{v} = \boldsymbol{\alpha} + \boldsymbol{\tau} + \boldsymbol{\alpha} + \boldsymbol{v} + \boldsymbol{v}$	2	Y1	1	0	-1	0	-1	0	-1	0) 1	0	-1	0		0				
$Y_2 = C_2 + I_2 + G_2 + X_2 - M_2$	3	Y2	0	1	0	-1	0	-1	C	-1	0	1	0	-1		0				
	4	C1	-0.65	0	1	0	0	0	0			0	0	0		350				
$C_1 = 350 \pm 0.05 Y_1$	5	11	0	-0.6	0	0	1	0) 0) 0	0	0	0		1200				
	7	12	0	0	0	0	0	1	0	0 0	0	0	0	0		600				
$C_2 = 450 \pm 0.6 Y_2$	8	G1	0	0	0	0	0	0	1	0) 0	0	0	0		550	<	G1증가		
	9	G2	0	0	0	0	0	0	C) 1	0	0	0	0		280				
L = 1200	10	M1	-0.2	0	0	0	0	0	C	0 0) 1	0	0	0		0				
-1	11	M2	0	-0.3	0	0	0	0	C	0 0	0 0	1	0	0		0				
L = 600	12	X1	0	-0.3	0	0	0	0	C	0 0	0 0	0	1	0		0				
12 000	13	X2	-0.2	0	0	0	0	0	C	0 0) 0	0	0	1		0				
$G_{*} = 550$	14		2 15 20 46	0.022077	2 15 20 46	0.022077	2 15 20 46	0.022077	2 15 20 46	0.022077	2 1 5 2 0 5	0.02200	2 15 20 46	0.00077	V1-		5754		215	2 15 20 46
01 000	15		2.133040	1.602308	2.155040	1.602308	0.615395	1.602308	0.615385	1 602309	-2.13503	-0.92506	0.615385	1.602308	V2-		25/21		62	2.155040
C = 290	17		1.4	0.6	2.4	0.6	1.4	0.6	1.4	06	-0.01330	-0.6	1.4	0.6	C1=	_	4088		02	0.015505
$G_2 = 200$	18		0.369231	1.015385	0.369231	2.015385	0.369231	1.015385	0.369231	1.015385	-0.36923	-1.01538	0.369231	1.015385	C2=		2576			
M = 0.0 V	19		0	0	0	0	1	0	C	0	0 0	0	0	0	<mark> 1=</mark>		1200			
$M_1 = 0.2 Y_1$	20		0	0	0	0	0	1	C	0	0 0	0	0	0	12=		600			
10-0.21	21		0	0	0	0	0	0	1	0) 0	0	0	0	G1:	-	550			
$M_2 = 0.3 Y_2$	22		0	0	0	0	0	0	C	1 1	0	0	0	0	G2=	-	280			
	23		0.430769	0.184615	0.430769	0.184615	0.430769	0.184615	0.430769	0.184615	0.569231	-0.18462	0.430769	0.184615	M1	=	1150			
$X_1 = 0.3 Y_2$	24		0.184615	0.507692	0.184615	0.507692	0.184615	0.507692	0.184615	0.507692	-0.18462	0.492308	0.184615	0.507692	M2	=	1063			
	25		0.184615	0.507692	0.184615	0.507692	0.184615	0.507692	0.184615	0.507692	-0.18462	-0.50769	1.184615	0.507692	X1=		1063			
$X_2 = 0.2 Y_1$	26		0.430769	0.184615	0.430769	0.184615	0.430769	0.184615	0.430765	0.184615	-0.43077	-0.18462	0.430769	1.184615	<u>X2</u> =		1150			

• 제1국의 정부지출이 450에서 550으로 100증가함에 따라 제1국의 국민소득은 5535에서 5751로 215가 증가하여 정부지출 승수는 2.15로 나타남

• 반면에, 제2국의 국민소득은 3482에서 3543으로 62가 증가하여 정부지출 승수는 0.62로 나타남

J 제줏대학교 Ⅱ. R 다국간 모형

