

I. Excel IS-LM모형

II. R IS-LM모형

《 J 제주대학교 I . Excel IS-LM모형

1. 모형

- 생산물시장과 화폐시장의 동시 균형을 나타내 주는 IS-LM모형의 경우 생산물시장의 균형을 나타내는 IS 곡선과 화폐시장의 균형을 나타내는 LM곡선이 만나는 점에서 균형이자율과 균형국민소득이 결정되고, 이에 따라 소비, 수입 및 투자도 결정되므로 내생변수이고, 정부지출, 수출, 화폐공급은 외생변수
- 한편, 정부지출, 투자 등 외생변수가 변할 때 내생변수가 어떻게 변하는 지를 분석하는 것을 비교정태분석 이라고 하는데 특히, 정부지출 변화의 크기에 대한 국민소득 변화의 크기를 정부지출 승수라고 함

2. 모형의 예(국내모형)

$$Y = C + I + G$$

 $M_d = M_s$
 $C = 200 + 0.75(Y - T)$
 $I = 200 - 25r$
 $T = 100$
 $G = 100$
 $\frac{M_d}{P} = Y - 100r(P = 27)$

- 내생변수 : Y, C, I, r, M_d
- 외생변수 : T, G, P, M_s

(1) 모형의 해 구하기

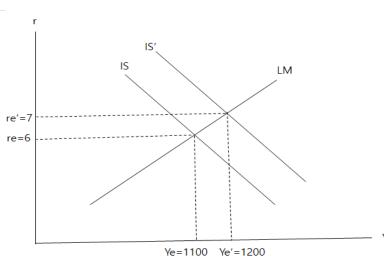
- 이 모형을 다음과 같이 나타냄

$$Y-C-I-G=0$$

 $M_d-M_s=0$
 $C-0.75Y+0.75T=200$
 $I+25r=200$
 $G=100$
 $T=100$
 $M_d=2Y-200r$
 $M_s=1000$

- IS-LM모형의 해 역시 $X = A^{-1}H$ 와 같이 구할 수 있음
 - 아래 그림과 같이 A행렬과 H벡터를 입력한 후 A행렬의 역행렬의 결과가 구해질 영역(A11부터 H18)을 마우스로 끌어서 연속되게 선택하고 =MINVERSE(A2:H9)의 식을 입력하고 Ctrl+Shift+Enter를 동시에 눌러 역행렬을 구함
 - 다음으로 연립방정식의 해를 구할 영역(K11부터 K18)을 마우스로 끌어서 연속되게 선택하고 =MMULT(A11:H18,J2:J9)의 식을 입력하고 Ctrl+Shift+Enter를 동시에 눌러 해를 구함
- IS-LM모형에서 균형국민소득과 균형이자율의 결정을 그림으로 그려보면 아래 우측 그림과 같음

	Α	В	С	D	Е	_	G	Н	1	1.0	K	
	v A				-	-			'	,	K	
1	Y	. 1		G	I	r	Md	Ms		상수		
2	1	-1	-1	-1	0	0	0	0			균형	
3	0	0	0	0	0	0	1	-1		(균형	- IS
4	-0.75	1	0	0	0.75	0	0	0		200		
5	0	0	1	0	0	25	0	0		200		
6	0	0	0	1	0	0	0	0		100)	
7	0	0	0	0	1	0	0	0		100)	
8	-2	0	0	0	0	200	1	0		()	
9	0	0	0	0	0	0	0	1		1000)	균형이자율(re)=6
10												
11	2	0.25	2	2	2	-1.5	-0.25	0.25		Y=	1100	
12	1.5	0.1875	2.5	1.5	1.5	-1.875	-0.1875	0.1875		C=	950	
13	-0.5	0.0625	-0.5	0.5	-0.5	0.375	-0.0625	0.0625		=	50	
14	0	0	0	0	1	0	0	0		G=	100	
15	0	0	0	0	0	1	0	0		T=	100	
16	0.02	-0.0025	0.02	0.02	0.02	-0.015	0.0025	-0.0025		r=	6	
17	0	1	0	0	0	0	0	1		Md=	1000	7+17-01-1-00-1-00-1-00-1-00-1-00-1-00-1-
18	0	0	0	0	0	0	0	1		Ms=	1000	균형국민소득(Ye)=1100


(2) 비교정태분석(정부지출)

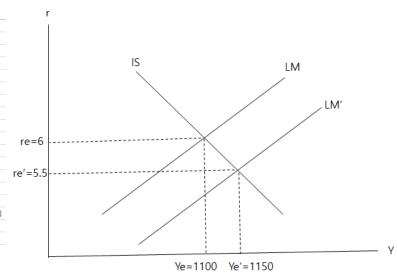
- 정부지출(G)이 100에서 150으로 증가될 경우 비교정태분석을 수행하여 균형국민소득과 균형이자율의 변화를 살펴보고, 정부지출승수를 구할 수 있는데 모형은 다음과 같음

$$Y = C + I + G$$

 $M_d = M_s$
 $C = 200 + 0.75 (Y - T)$
 $I = 200 - 25r$
 $T = 100$
 $G = 150$
 $\frac{M_d}{P} = Y - 100r(P = 27 + 78)$
 $M_s = 1000$

- 정부지출(G)을 종전의 100에서 50이 증가한 150을 대입하여 해를 다시 구하면 균형국민소득은 1100에서 100이 증가한 1200이 되고, 균형이자율은 6%에서 1%p 상승한 7%가 되는 것을 확인할 수 있음
- ullet 정부지출승수는 정부지출증가분 분의 국민소득증가분 즉, $rac{\Delta Y}{\Delta G}=rac{100}{50}=2$ 가 됨
- 정부지출 증가에 따른 균형국민소득 및 균형이자율의 변화를 그림으로 그려보면 아래 우측과 같음

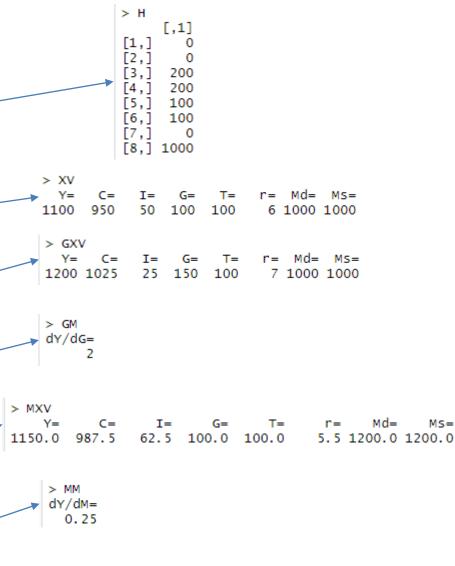
V	M	L	K	J	1	Н	G	F	E	D	С	В	Α	
				상수		Ms	Md	r	T	G	I	С	Υ	1
			균형	0		0	0	0	0	-1	-1	-1	1	2
			균형	0		-1	1	0	0	0	0	0	0	3
				200		0	0	0	0.75	0	0	1	-0.75	4
				200		0	0	25	0	0	1	0	0	5
	:50	G 증가분=	>	150		0	0	0	0	1	0	0	0	6
				100		0	0	0	1	0	0	0	0	7
				0		0	1	200	0	0	0	0	-2	8
				1000		1	0	0	0	0	0	0	0	9
														10
100	Y 증가분=1	>	1200	Y=		0.25	-0.25	-1.5	2	2	2	0.25	2	11
			1025	C=		0.1875	-0.1875	-1.875	1.5	1.5	2.5	0.1875	1.5	12
			25	=		0.0625	-0.0625	0.375	-0.5	0.5	-0.5	0.0625	-0.5	13
			150	G=		0	0	0	1	0	0	0	0	14
			100	T=		0	0	1	0	0	0	0	0	15
(%p)	r 증가분=1	>	7	r=		-0.0025	0.0025	-0.015	0.02	0.02	0.02	-0.0025	0.02	16
			1000	Md=		1	0	0	0	0	0	1	0	17
			1000	Ms=		1	0	0	0	0	0	0	0	18



- (3) 비교정태분석(통화량)
- 통화량이 1000에서 1200으로 증가하면 비교정태분석을 수행하여 균형국민소득과 균형이자율의 변화를 살펴볼 수 있는데 모형은 다음과 같음

$$Y = C + I + G$$

 $M_d = M_s$
 $C = 200 + 0.75(Y - T)$
 $I = 200 - 25r$
 $T = 100$
 $G = 100$
 $\frac{M_d}{P} = Y - 100r(P = 27)$ 3)
 $M_s = 1200$


- 정부지출은 원래 100으로 수정하고, 통화량을 종전의 1000에서 200이 증가한 1200을 대입하여 해를 다시 구하면 균형국민소득은 1100에서 50이 증가한 1150이 되고, 균형이자율은 6%에서 0.5%p 하락한 5.5%가 되는 것을 확인할 수
- 통화량 증가에 따른 균형국민소득 및 균형이자율의 변화를 그림으로 그려보면 아래 우측과 같음

	Α	В	С	D	E	F	G	Н	I	J	K	L	M	N
1	Υ	С	I	G	Т	r	Md	Ms		상수				
2	1	-1	-1	-1	0	0	0	0		0	균형			
3	0	0	0	0	0	0	1	-1		0	균형			
4	-0.75	1	0	0	0.75	0	0	0		200				
5	0	0	1	0	0	25	0	0		200				
6	0	0	0	1	0	0	0	0		100				
7	0	0	0	0	1	0	0	0		100				
8	-2	0	0	0	0	200	1	0		0				
9	0	0	0	0	0	0	0	1		1200	>	Ms 증가분	=200	
10														
11	2	0.25	2	2	2	-1.5	-0.25	0.25		Y=	1150	>	Y 증가분=	50
12	1.5	0.1875	2.5	1.5	1.5	-1.875	-0.1875	0.1875		C=	987.5			
13	-0.5	0.0625	-0.5	0.5	-0.5	0.375	-0.0625	0.0625		I=	62.5			
14	0	0	0	0	1	0	0	0		G=	100			
15	0	0	0	0	0	1	0	0		T=	100			
16	0.02	-0.0025	0.02	0.02	0.02	-0.015	0.0025	-0.0025		r=	5.5	>	r 감소분=(0.5(%p)
17	0	1	0	0	0	0	0	1		Md=	1200			
18	0	0	0	0	0	0	0	1		Ms=	1200			
10														

제주대학교 Ⅱ. R IS-LM모형

```
b3-ch6-2-rev.R
library(openxlsx)
dat<-read.xlsx("http://kanggc.iptime.org/book/data/macro-
islm-e.xlsx")
A<-as.matrix(dat)
H < -matrix(c(0,0,200,200,100,100,0,1000), nrow=8)
                                                                       > XV
X<-t(solve(A)\%*\%H)
XV<-as.vector(X)
                                                                       1100
names(XV)<-c("Y=","C=","I=","G=","T=","r=","Md=","Ms=")
XV —
GH < -matrix(c(0,0,200,200,150,100,0,1000), nrow=8)
GX<-t(solve(A)%*%GH)
                                                                       > GM
GXV<-as.vector(GX)
names(GXV)<-c("Y="."C="."I="."G="."T="."r="."Md="."Ms=")
GXV-
GM < -(GXV[1] - XV[1])/(GXV[4] - XV[4])
                                                                  > MXV
names(GM)<-c("dY/dG=")
                                                                  1150.0
GM -
MH < -matrix(c(0,0,200,200,100,100,0,1200), prow=8)
MX<-t(solve(A)%*%MH)
MXV<-as.vector(MX)
names(MXV)<-e("Y=","C=","I=","G=","T=","r=","Md=","Ms=")
MXV -
MM < -(MXV[1] - XV[1])/(MXV[8] - XV[8])
names(MM)<-c("dY/dM=")
MM
```

