제8강 가변수

- 1. 모형
- 2. 유형
- 3. 복수 가변수

(1) 필요성

- -가변수(dummy variable)는 독립변수 중의 일부가 성질을 달리하는 질적인 자료로 되어 있을 경우 사용됨
- -가변수란 질적인 면을 나타내 주는 변수이며 가변수를 사용하면 더욱 정확한 통계적 추론을 할 수 있음
- -질적인 면을 고려해야 함에도 불구하고 이를 고려하지 않을 경우 이는 모형내 있어야 할 변수를 뺀 경우이고 이 경우 추정량은 불편성을 가지지 못함

(2) 종류

- -가변수는 질적 범주를 구별하기 의해 사용되는 변수이므로 모형에서 어느 한 질적 변수의 2개의 질적 범주를 구분하기 위해서 하나의 가변수가 통상적으로 쓰임
- -둘 이상의 질적 변수나 어느 한 질적 변수의 두 개 이상의 질적 범주를 모형이 포함하고 있을 경우 두 개 이상의 가변수가 필요함

(예1)전시와 소비시의 소비행태

$$egin{aligned} C_t &= oldsymbol{eta}_0 + oldsymbol{eta}_1 Y_t + u_t \ & (보통회귀식) \ & C_t &= oldsymbol{eta}_0 + oldsymbol{eta}_1 Y_t + oldsymbol{eta}_2 D_t + u_t \ & (가변수가 포함된 회귀식) \ & oldsymbol{eta}_t, D_t &= \left\{ egin{aligned} 1, t \end{pmatrix} \ & oldsymbol{eta}_0, t \end{pmatrix} \ & oldsymbol{eta}_0, t \end{pmatrix}$$

(예2)성별 및 인종별 임금격차(두 개의 질적 변수를 가진 경우)

$$egin{aligned} Y_i &= oldsymbol{eta}_0 + oldsymbol{eta}_1 X_i + u_i \ Y_i &= oldsymbol{eta}_0 + oldsymbol{eta}_1 X_i + oldsymbol{eta}_2 D_{1i} + oldsymbol{eta}_3 D_{2i} + u_i \ &oldsymbol{eta}_i &= igg\{ egin{aligned} 1, i
ightharpoonup & oldsymbol{eta}_1, i
ightharpoonup & oldsymbol{eta}_1, i
ightharpoonup & oldsymbol{eta}_2 \ oldsymbol{eta}_i & oldsymbol{eta}_i
ightharpoonup & oldsymbol{eta}_2 \ oldsymbol{eta}_1, i
ightharpoonup & oldsymbol{eta}_2 \ oldsymbol{eta}_2 \ oldsymbol{eta}_2 \ oldsymbol{eta}_1, i
ightharpoonup & oldsymbol{eta}_2 \ oldsymbol{$$

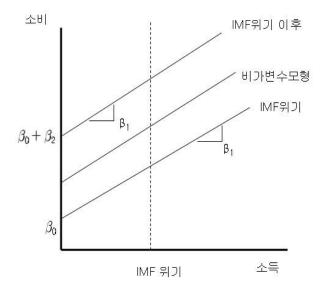
(보통회귀식)

(가변수가 포함된 회귀식)

(예3)학력별 임금격차(두 개 이상의 질적 범주를 가진 경우)

$$egin{aligned} Y_i &= eta_0 + eta_1 X_i + u_i \ Y_i &= eta_0 + eta_1 X_i + eta_2 D_{Hi} + eta_3 D_{Ci} + u_i \ \end{array}$$
 단, $D_{Hi} = 0$, $D_{Ci} = 0$, i 가 중졸 이하 $D_{Hi} = 1$, $D_{Ci} = 0$, i 가 고졸 $D_{Hi} = 0$, $D_{Ci} = 1$, i 가 대졸 이상

(보통회귀식)


(가변수가 포함된 회귀식)

(1)절편(평균)의 변화를 나타내는 가변수

$$C_t = \beta_0 + \beta_1 Y_t + \beta_2 D_t + u_t$$

단,
$$D_t = \left\{ egin{aligned} \mathbf{1}, t & \mathsf{IMF} & \mathsf{HIMF} \\ \mathbf{0}, t & \mathsf{IMF} & \mathsf{HIMF} \end{aligned} \right\}$$

자료 구조

연도	C(조 원)	Y(조 원)	D
•	•	•	•
1995	214	408	1
1996	245	458	1
1997	271	502	1
1998	252	492	0
1999	289	542	0
2000	330	600	0
2001	364	649	1
•	•	•	•
2009	577	1,068	1

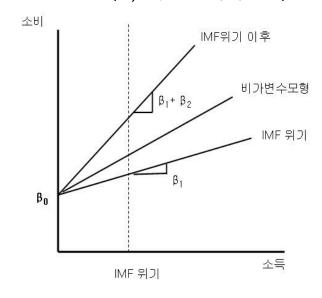
-위의 가변수모형을 추정한 후 가변수가 통계적으로 유의할 경우 위 식의 추정은 다음의 두 식을 개별적으로 추정 한 결과와 동일함

(IMF위기)
$$C_t = oldsymbol{eta}_0 + oldsymbol{eta}_1 Y_t + u_t$$
 (IMF위기 이후) $C_t = (oldsymbol{eta}_0 + oldsymbol{eta}_2) + oldsymbol{eta}_1 Y_t + u_t$

(가설검정)

- -가변수에 대한 가설검정에서 귀무가설은 H_0 : $oldsymbol{eta}_2 = oldsymbol{0}$ 으로 IMF위기와 IMF위기 이후의 소비수준에 차이가 없다는 가설임
- -귀무가설을 기각하면(즉, $oldsymbol{eta}_2$ 가 통계적으로 유의하면) IMF위기와 IMF위기 이후의 소비수준에 차이가 있다고 결론을 내림
- -따라서 이 경우는 IMF위기와 IMF위기 이후의 소비함수를 각각 추정해야 하는데 가변수를 포함한 식을 추정하면 이와 동일한 결과를 얻을 수 있음

(회귀계수에 대한 해석)


- $-\widehat{oldsymbol{eta}}_1$: 한계소비성향으로 IMF위기의 한계소비성향과 IMF위기 이후의 한계소비성향이 같음
- $-\widehat{oldsymbol{eta}}_{0}$: IMF위기의 절대소비수준
- $-\widehat{oldsymbol{eta}}_2$: IMF위기 이후 소비수준과 IMF위기 소비수준의 차이
- -따라서 IMF위기 이후 소비수준은 $\widehat{oldsymbol{eta}}_0+\widehat{oldsymbol{eta}}_2$

```
> m1.lm<-lm(c~d+y)
> summary(m1.lm)
call:
lm(formula = c \sim d + v)
Residuals:
           1Q Median
   Min
                            3Q
                                  Max
-2307.8 -806.9 -375.7 1054.6 3019.7
Coefficients:
            Estimate Std. Error t value Pr(>|t|)
(Intercept) 9.854e+03 4.432e+03 2.223 0.0368 *
           3.419e+03 6.979e+02 4.898 6.74e-05 ***
           5.092e-01 4.014e-02 12.685 1.36e-11 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 1448 on 22 degrees of freedom
Multiple R-squared: 0.8841, Adjusted R-squared: 0.8735
F-statistic: 83.87 on 2 and 22 DF, p-value: 5.092e-11
```


(2)기울기(한계)의 변화를 나타내는 가변수

$$egin{aligned} \mathcal{C}_t &= oldsymbol{eta}_0 + oldsymbol{eta}_1 Y_t + oldsymbol{eta}_2 D_t Y_t + u_t \ oldsymbol{ar{U}}, \, D_t &= egin{aligned} \mathbf{1}, t op IMF 위 op 0 & oldsymbol{ar{E}} \\ \mathbf{0}, t op IMF 위 op 0 \end{aligned}$$

자료 구조

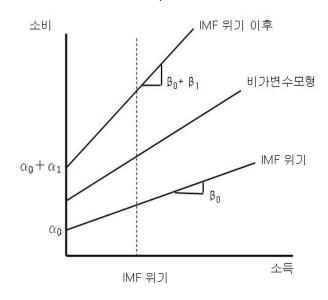
연도	C(조 원)	Y(조 원)	D	D*Y
•	•	•	•	•
1995	214	408	1	408
1996	245	458	1	458
1997	271	502	1	502
1998	252	492	0	0
1999	289	542	0	0
2000	330	600	0	0
2001	364	649	1	649
•	•	•	•	•
2009	577	1,068	1	1,068

-위의 가변수모형을 추정한 후 가변수가 통계적으로 유의할 경우 위 식의 추정은 다음의 두 식을 개별적으로 추정한 결과와 동일함

(IMF위기)
$$C_t=oldsymbol{eta}_0+oldsymbol{eta}_1Y_t+u_t$$
 (IMF위기 이후) $C_t=oldsymbol{eta}_0+(oldsymbol{eta}_1+oldsymbol{eta}_2)Y_t+u_t$

(가설검정)

- -귀무가설은 H_0 : $oldsymbol{eta}_2 = \mathbf{0}$ 으로 IMF위기와 IMF위기 이후의 한계소비성향에 차이가 없다는 가설임
- -귀무가설을 기각하면(즉, $oldsymbol{eta}_2$ 가 통계적으로 유의하면) IMF위기와 IMF위기 이후의 한계소비성향에 차이가 있다고 결론을 내림
- -따라서 이 경우는 IMF위기와 IMF위기 이후의 소비함수를 각각 추정해야 하는데 가변수를 포함한 식을 추정하면 이와 동일한 결과를 얻을 수 있음


(회귀계수에 대한 해석)

- $-\widehat{oldsymbol{eta}}_{oldsymbol{0}}$: 절대소비수준으로 IMF위기의 절대소비수준과 IMF위기 이후의 절대소비수준은 같음
- $-\hat{\boldsymbol{\beta}}_1$: IMF위기의 한계소비성향
- $-\widehat{\boldsymbol{\beta}}_2$: IMF위기 이후 한계소비성향과 IMF위기 한계소비성향의 차이
- -따라서 IMF위기 이후 한계소비성향의 값은 $\widehat{oldsymbol{eta}}_1+\widehat{oldsymbol{eta}}_2$

```
> m2.1m < -1m(c \sim v + dv)
> summary(m2.1m)
call:
lm(formula = c \sim y + dy)
Residuals:
   Min 1Q Median
                            30
                                  Max
-2230.1 -874.9 -292.3 1064.8 2923.8
Coefficients:
             Estimate Std. Error t value Pr(>|t|)
(Intercept) 1.043e+04 4.237e+03 2.463 0.0221 *
            5.377e-01 4.235e-02 12.698 1.33e-11 ***
           -3.398e-02 6.652e-03 -5.108 4.06e-05 ***
dy
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' '1
Residual standard error: 1416 on 22 degrees of freedom
Multiple R-squared: 0.8891, Adjusted R-squared: 0.879
F-statistic: 88.2 on 2 and 22 DF, p-value: 3.117e-11
```


(3)절편과 기울기의 동시변화를 나타내는 가변수

자료 구조

연도	C(조 원)	Y(조 원)	D	D*Y
	•	•		•
1995	214	408	1	408
1996	245	458	1	458
1997	271	502	1	502
1998	252	492	0	0
1999	289	542	0	0
2000	330	600	0	0
2001	364	649	1	649
•	•	•	•	•
2009	577	1,068	1	1,068

-위의 가변수모형을 추정한 후 가변수가 통계적으로 유의할 경우 위 식의 추정은 다음의 두 식을 개별적으로 추정한 결과와 동일함

(IMF위기)
$$C_t=lpha_0+eta_0Y_t+u_t$$
 (IMF위기 이후) $C_t=(lpha_0+lpha_1)+(eta_0+eta_1)Y_t+u_t$

(가설검정) 3종류의 가설검정이 가능함

- ① H_0 : $\alpha_1 = 0$ (IMF위기와 IMF위기 이후의 소비수준에 차이가 없다)
- -귀무가설을 기각하면(즉, $lpha_1$ 이 통계적으로 유의하면) IMF위기와 IMF위기 이후의 소비수준에 차이가 있다고 결론을 내림
- -따라서 이 경우는 IMF위기와 IMF위기 이후의 소비함수를 각각 추정해야 하는데 가변수를 포함한 식을 추정하면 이와 동일한 결과를 얻을 수 있음
- ② H_0 : $\beta_1 = 0$ (IMF위기와 IMF위기 이후의 한계소비성향에 차이가 없다)
- -귀무가설을 기각하면(즉, $oldsymbol{eta}_1$ 이 통계적으로 유의하면) IMF위기와 IMF위기 이후의 한계소비성향에 차이가 있다고 결론을 내림
- -따라서 이 경우는 IMF위기와 IMF위기 이후의 소비함수를 각각 추정해야 하는데 가변수를 포함한 식을 추정하면 이와 동일한 결과를 얻을 수 있음
- ③ H_0 : $\alpha_1 = \beta_1 = 0$ (IMF위기와 IMF위기 이후의 소비수준 및 한계소비성향에 차이가 없다)
- -귀무가설을 기각하면(즉, $lpha_1$ 과 $oldsymbol{eta}_1$ 이 동시에 통계적으로 유의하면) IMF위기와 IMF위기 이후의 소비수준 및 한계소비성향에 차이가 있다고 결론을 내림
- -따라서 이 경우는 IMF위기와 IMF위기 이후의 소비함수를 각각 추정해야 하는데 가변수를 포함한 식을 추정하면 이와 동일한 결과를 얻을 수 있음

(회귀계수에 대한 해석)

- $-\hat{\alpha}_0$: IMF위기의 절대소비수준
- $-\hat{\alpha}_1$: IMF위기 이후의 절대소비수준과 IMF 위기의 절대소비수준의 차이
- $-\widehat{\boldsymbol{\beta}}_{\mathbf{0}}$: IMF위기의 한계소비성향
- $-\widehat{oldsymbol{eta}}_1: \mathsf{IMF}$ 위기 이후의 한계소비성향과 IMF 위기의 한계소비성향의 차이


```
Regression Results of using Dummy Variable
_____
                                                Dependent variable:
                         (1)
                                            (2)
                                                                (3)
                                                                                 -12,172.840
                                         3.418.648***
                                          (697.938)
                                                                                 (9,656.625)
                       0.400***
                                        0.509***
                                                              0.504***
                                                                                 0.476***
У
                       (0.047)
                                         (0.040)
                                                              (0.038)
                                                                                  (0.044)
                                                               0.034***
dy
                                                                                 0.152
                                                               (0.007)
                                                                                  (0.094)
                   23,033.120*** 9,854.362** 10,433.910**
(4,980.694) (4,432.226) (4,236.569)
                                                                               13.476.090**
Constant
                                                                               (4,827.492)
Observations
                                            25
                                                                25
                        25
                                                                                    25
                                                                                  0.897
R2
                        0.758
                                           0.884
                                                               0.889
Adjusted R2
                      0.747
                                          0.874
                                                               0.879
                                                                                   0.882
Residual Std. Error 2,047.203 (df = 23) 1,447.710 (df = 22) 1,415.773 (df = 22) 1,397.192 (df = 21)
F Statistic 71.886*** (df = 1; 23) 83.870*** (df = 2; 22) 88.199*** (df = 2; 22) 60.903*** (df = 3; 21)
                                                                        *p<0.1; **p<0.05; ***p<0.01
Note:
```


가설검정 요약

구분	1단계	2단계	3단계	4단계
Case 1	α1=0 기각 β1=0 허용	가변수 모형 1		
Case 2	α1=0 허용 β1=0 기각	가변수 모형 2		
Case 3	α1=0 기각 β1=0 기각	가변수 모형 3		
Case 4	α1=0 허용 β1=0 허용	α1=β1=0 허용	가변수가 없는 모형	
Case 5	α1=0 허용 β1=0 허용	α1=β1=0 기각	α1=0 기각 and β1=0 허용	가변수 모형 1
Case 6	α1=0 허용 β1=0 허용	α1=β1=0 기각	α1=0 허용 and β1=0 기각	가변수 모형 2
Case 7	α1=0 허용 β1=0 허용	α1=β1=0 기각	α1=0 기각 and β1=0 허용 또는 β1=0 기각 and α1=0 허용	가변수 모형 1 및 가변수 모형 2 중 결정계수가 큰 모형

3. 복수 가변수

- (1)한 개 정성변수에 여러 범주의 경우
- -한 개 정성변수에 범주가 n개(n≥3)인 경우 n-1개의 가변수를 생성
- (예)학력을 중졸이하, 고졸, 대졸이상으로 구분할 경우 High, College 가변수를 생성하면 다음과 같이 3개의 범주로 구분이 됨
- -중졸 이하: High=0, College=0 -고졸: High=1, College=0 -대졸 이상: High=0, College=1
- (2)여러 정성변수의 경우
- -정성변수가 2개 이상인 경우 각각의 정성변수에 대해 가변수를 생성
- (예)성별 및 학력별에 따른 임금구조를 알고자 할 경우 성별 가변수 Gender(남자=1, 여자=0)와 학력 가변수 High, College를 생성

-여자 : Gender=0 -중졸 이하 : High=0, College=0 -남자 : Gender=1 -고졸 : High=1, College=0

놓 -대졸 이상 : High=0, College=1

(예)근무연수(나이, X) 외에 성별(Gender) 및 학력별(High, College) 임금구조를 분석하고자 할 경우 다음의 모형을 설정할 수 있음

$$Y_i = \alpha + \beta X_i + \gamma Gender_i + \delta High_i + \pi College_i + u_i$$

(해석)위 회귀식에서 다음과 같이 임금구조를 도출할 수 있음

중졸이하 여자의 경우 : $Y_i = \alpha + \beta X_i + u_i$

중졸이하 남자의 경우 : $Y_i = (\alpha + \gamma) + \beta X_i + u_i$

고졸 여자의 경우 : $Y_i = (\alpha + \delta) + \beta X_i + u_i$

고졸 남자의 경우 : $Y_i = (\alpha + \gamma + \delta) + \beta X_i + u_i$

대졸이상 여자의 경우 : $Y_i = (\alpha + \pi) + \beta X_i + u_i$

대졸이상 남자의 경우 : $Y_i = (\alpha + \gamma + \pi) + \beta X_i + u_i$

구분	여자	남자
중졸 이하	-1.363(reference)	(-1.363+0.658)=-0.705
고졸	(-1,363+0.389)	(-0.705+0.389)
대졸 이상	(-1,363+0.982)	(-0.705+0.982)

Regression Results	of using Dummy Variable
	Dependent variable:
	income
age	0.052***
	(0.014)
gender	0.658***
	(0.209)
high	0.389
	(0.239)
college	0.982***
	(0.241)
Constant	-1.363**
	(0.596)
Observations	 85
R2	0.409
Adjusted R2	0.379
Residual Std. Error	
F Statistic	13.820*** (df = 4; 80)
Note:	*p<0.1; **p<0.05; ***p<0.01