import pandas as pd import numpy as np #import scipy.stats as stats #from scipy.stats import chi2 from scipy.stats.distributions import f as fdist df = 11 f_1 = np.empty(df) f_2 = np.empty(df) f_3 = np.empty(df) f_4 = np.empty(df) f_5 = np.empty(df) f_6 = np.empty(df) f_7 = np.empty(df) f_8 = np.empty(df) f_9 = np.empty(df) f_10 = np.empty(df) # repeat r times: for j in range(df): f_1[j] = fdist.ppf(0.95, 1, j) j=j+1 # repeat r times: for j in range(df): f_2[j] = fdist.ppf(0.95, 2, j) j=j+1 # repeat r times: for j in range(df): f_3[j] = fdist.ppf(0.95, 3, j) j=j+1 # repeat r times: for j in range(df): f_4[j] = fdist.ppf(0.95, 4, j) j=j+1 # repeat r times: for j in range(df): f_5[j] = fdist.ppf(0.95, 5, j) j=j+1 # repeat r times: for j in range(df): f_6[j] = fdist.ppf(0.95, 6, j) j=j+1 # repeat r times: for j in range(df): f_7[j] = fdist.ppf(0.95, 7, j) j=j+1 # repeat r times: for j in range(df): f_8[j] = fdist.ppf(0.95, 8, j) j=j+1 # repeat r times: for j in range(df): f_9[j] = fdist.ppf(0.95, 9, j) j=j+1 # repeat r times: for j in range(df): f_10[j] = fdist.ppf(0.95, 10, j) j=j+1 f_dist = pd.DataFrame({'v2=1':f_1,'v2=2':f_2,'v2=3':f_3,'v2=4':f_4,'v2=5':f_5,'v2=6':f_6,'v2=7':f_7,'v2=8':f_8,'v2=9':f_9,'v2=10':f_10}) f = f_dist.dropna(how='all') # to drop if all values in the row are NaN round(f, 2) print("F Distribution Table at 5% significancr level with 'v2=1, ..., v2=10' : ", f'\n{round(f, 2)}\n')