import pandas as pd import numpy as np #import scipy.stats as stats from scipy.stats import norm r = 50 z_00 = np.empty(r) for j in range(r): z_00[j] = norm.cdf(j/100, loc=0, scale=1)-0.5 j=j+1 #print(z_00) i_1 = np.arange(0,10) i_2 = np.arange(10,20) i_3 = np.arange(20,30) i_4 = np.arange(30,40) i_5 = np.arange(40,50) z_0 = z_00[i_1] z_1 = z_00[i_2] z_2 = z_00[i_3] z_3 = z_00[i_4] z_4 = z_00[i_5] z_0_0 = pd.Series(z_0) z_1_0 = pd.Series(z_1) z_2_0 = pd.Series(z_2) z_3_0 = pd.Series(z_3) z_4_0 = pd.Series(z_4) z = pd.DataFrame({'0.0':z_0_0, '0.1':z_1_0,'0.2':z_2_0,'0.3':z_3_0,'0.4':z_4_0}) z=z.T z = z.rename(columns={z.columns[0]: '0.00'}) z = z.rename(columns={z.columns[1]: '0.01'}) z = z.rename(columns={z.columns[2]: '0.02'}) z = z.rename(columns={z.columns[3]: '0.03'}) z = z.rename(columns={z.columns[4]: '0.04'}) z = z.rename(columns={z.columns[5]: '0.05'}) z = z.rename(columns={z.columns[6]: '0.06'}) z = z.rename(columns={z.columns[7]: '0.07'}) z = z.rename(columns={z.columns[8]: '0.08'}) z = z.rename(columns={z.columns[9]: '0.09'}) #print(z) round(z,4) print("Standard Normal Distribution Table : ", f'\n{round(z,4)}\n')