import numpy as np #import statsmodels.api as sm import scipy.stats as stats import matplotlib.pyplot as plt import seaborn as sns # set the random seed: np.random.seed(123456) # set sample size: n = 11 # initialize r to an array of length r=1000 to later store results: r = 1000 sample_mean = np.empty(r) sample_var = np.empty(r) # repeat r times: for j in range(r): # draw a sample and store the sample mean in pos. j=0,1,... of ybar: sample = stats.norm.rvs(10, 2, size=n) sample_mean[j] = np.mean(sample) sample_var[j] = np.var(sample, ddof=1) mean = np.mean(sample_var) variance = np.var(sample_var, ddof=1) print("Mean of sampling distribution from Normal is :", mean) print("Variance of sampling distribution from Normal is :", variance) # simulated density: #kde = sm.nonparametric.KDEUnivariate(sample_var) #kde.fit() fig, ax = plt.subplots() sns.histplot(data=sample_var, x=None, kde=True).set(title='Histogram of Sampling_dist w/ n=11') ax.set_xlim(0,15) #plt.savefig('C:/BOOK/PyBasics/PyStat/code/b1-ch5-8.png')