7-2 이론적 확률분포[이산형] 2

제주권역 대학
 -러닝 지원센터

7-2-1.베르누이 분포

1. 베르누이 시행(Bernoulli trial)

실험에서 결과가 둘 중의 하나로 나타나는 실험을 말한다.

그 중 하나를 성공(success : s)이라 하고 다른 하나를 실패(failure : f)라고 정의한다. 따라서 베르누이 시행은 실험의 결과가 s 또는 f 인 확률실험이라고 할 수 있으며, 표본공간은 Ω ={s, f} 이 된다.

이 실험에서 결과가 s 일 확률이 p 라면 확률의 기본원리에 의하여 실험결과가 f 일 확률은 1-p 이다.

예.베르누이 시행의 예

- (a) 동전 하나를 던지는 실험 결과 <mark>앞면(Head)/뒷면(Tail)</mark>
- (b) 대학에 지원한 한 학생의 시험결과 <u>결과 합격/불합격</u>
- (c) 한 공장의 생산제품의 불량여부 <u>결과 합격품/불량품</u>
- (d) 활을 쏘아서 과녁 맞추기 결과 성공/실패

2. 베르누이 확률변수

베르누이 시행에서 결과가 s 이면 '1'이고, 결과가 f 이면 '0'이라고 정의된 확률변수를 말한다.

3. 베르누이 확률분포

확률변수 X의 분포가 다음과 같을 때, X를 베르누이 확률변수라 하고, $X\sim$ Bernoulli(p)로 정의한다.

$$P_r(X = x) = p^x (1-p)^{1-x}, x = 0, 1$$

베르누이 분포의 모양은 확률 p 의 값에 의하여 결정되므로 이 분포의 모수는 p이다.

X	p(x)
0	1-p
1	р

4. 베르누이 확률분포의 평균과 분산

① 평균

$$E(X) = \sum x_i p_i = 0 \times (1-p) + 1 \times p = p$$

② 분산

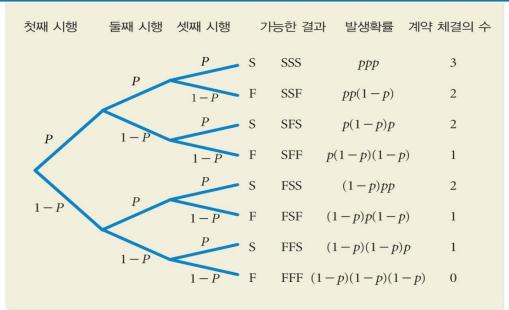
$$E(X^{2}) = \sum x_{i}^{2} p_{i} = 0 \times (1 - p) + 1 \times p = p$$

$$C_{X}^{2} = E(X^{2}) - [E(X)]^{2} = p - p^{2}$$

$$= p(1 - p)$$

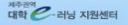
7-2-2.이항분포

베르누이 시행을 세 번 행할 때의 성공횟수와 발생확률의 예



방문자가 3명일 때의 이항분포

계약 체결의 수(x)	P(x)
0	$(1-p)^3$
1	$(1-p)^3$ $3p(1-p)^2$
2	$3p^2(1-p)$
3	p^3



1. 이항분포

이항분포 (binomial distribution) 는 베르누이 시행을 독립적으로 n번 반복했을 때 나타나는 결과에 있어서 성공(s)의 횟수에 대한 분포를 구하는 것이다.

성공의 확률이 p 이고 실패의 확률이 q(q = 1 - p) 인 베르누이 시행을 독립적으로 n 번 반복하였을 때 나타나는 성공의 횟수를 확률변수 X 라고할 때, X 를 이항확률변수 (binomial random variable) 라 하고, $X \sim B$ (n, p)로 정의하며 확률분포는 다음과 같다.

$$P_r(X = k) = \binom{n}{k} \rho^k q^{n-k}, \ k = 0, 1, 2, ..., n$$
 n!
$$\frac{n!}{k! (n-k)!}$$

이항분포에서 모수는 각 시행에서 성공이 나타날 확률 p와 시행횟수 n이다.

2. n개 독립인 확률변수의 합의 평균과 분산

 X_1 , X_2 , ..., X_n 이 서로 독립이며 각각의 평균이 μ 이고, 분산이 σ^2 이라면 이 확률변수들의 합 $X = \sum_{i=1}^n X_i$ 의 평균과 분산은 다음과 같다.

$$E(X) = n\mu$$
, $Var(X) = n\sigma^2$

3. 이항분포의 평균과 분산

위의 설명 2번을 이용하여 이항분포의 평균과 분산을 다음과 같이 유도할 수 있다. $X_1, X_2, ..., X_n$ 가 각각 서로 독립인 베르누이 확률변수이고 각각의 확률은

$$\Pr(X_i = 1) = p$$
, $\Pr(X_i = 0) = q$, $i = 1, 2, ..., n$ 이라고 할 때, 이항확률변수 $X = \sum_{i=1}^{n} X_i$ 라고 정의할 수 있다.

따라서 이항확률변수 X의 평균과 분산은 다음과 같다.

① 평균

$$E(X) = E(\sum_{i=1}^{n} X_i) = \sum_{i=1}^{n} E(X_i) = p + p + ... + p = np$$

② 분산

$$Var(X) = Var(\sum_{i=1}^{n} X_i) = \sum_{i=1}^{n} Var(X_i) = pq + pq + 1 + pq = npq$$

4. 이항분포의 확률계산

이항확률분포에서 확률의 계산은 부록III의 [표1]에 의하여 구할 수 있다. 표본의 수 n=5, 10, 15, 20, 25인 경우에 있어서 성공의 확률이 p인 이항확률 변수 X의 값 a까지의 누적확률을 제시하여 준다.

$$\Pr(X \le a) = \sum_{x=0}^{a} P(x)$$

[표 1] 누적이항확률분포표

$$P(X \le a) = \sum_{x=0}^{a} P(x)$$

(a) n = 5

F

0.01	0.05	0.10	0.20	0.30	0.40	0.50	0.60	0.70	0.80	0.90	0.95	0.99
.951	.774	.590	.328	.168	.078	.031	.010	.002	.000	.000	.000	.000
.999	.977	.919	.737	.528	.337	.188	.087	.031	.007	.000	.000	.000
1.000	.999	.991	.942	.837	.683	.500	.317	.163	.058	.009	.001	.000
1.000	1.000	1.000	.993	.969	.913	.812	.663	.472	.263	.081	.023	.001
1.000	1.000	1.000	1.000	.998	.990	.969	.922	.832	.672	.410	.226	.049


```
binom11<-rep(NA,5)
    binom12 < -rep(NA, 5)
    binom13 < -rep(NA, 5)
    binom11[1]<-pbinom(0, 5, 0.1)
    binom12[1]<-pbinom(0, 5, 0.2)
    binom13[1]<-pbinom(0, 5, 0.3)
 9 - for(i in 2:5) {
      binom11[i] < -pbinom(i-1, 5, 0.1)
10
11
12
13 - for(i in 2:5) {
      binom12[i]<-pbinom(i-1, 5, 0.2)
14
15
16
17 - for(i in 2:5) {
18
      binom13[i]<-pbinom(i-1, 5, 0.3)
19
20
21
    (binom<-cbind(binom11,binom12, binom13))
22
```

```
binom11 binom12 binom13

[1,] 0.59049 0.32768 0.16807

[2,] 0.91854 0.73728 0.52822

[3,] 0.99144 0.94208 0.83692

[4,] 0.99954 0.99328 0.96922

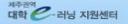
[5,] 0.99999 0.99968 0.99757
```


재벌 구조조정에 대한 한 신문사의 여론조사 결과, 우리 국민들 중 80%는 강도 있는 재벌 구조조정에 찬성하고 20%는 반대하는 것으로 나타났다고 하자. 임의로 5명이 선택되었을 때 3명이 반대할 확률은 얼마인가? 또한 임의로 선택된 5명 중 3명 이상이 반대할 확률은 얼마인가?

$$P_X(3) = {}_{5}C_{3}0.2^{3} \times 0.8^{2} = 0.0512$$

따라서 임의로 선택된 5명 중 3명이 반대할 확률은 0.0512이다. 그리고 3명 이상이 반대할 확률은 다음과 같다.

$$P(X \ge 3) = P_X(3) + P_X(4) + P_X(5)$$
$$= 0.0512 + 0.0064 + 0.0003 = 0.0579$$



5. 이항분포의 그래프

이항분포는 성공확률 p가 0.5이면 평균 $\mu = np = \frac{n}{2}$ 을 중심으로 좌우대칭인 분포를 가지며, p 와 n의 크기에 따라 모양이 결정된다. 세 가지 경우에 대한 이항분포의 그림은 다음과 같다.

```
1 | set.seed(12345)
2 | r<-10000
4 | binom1<-rbinom(r, 10, 0.1)
6 | binom2<-rbinom(r, 10, 0.5)
7 | binom3<-rbinom(r, 20, 0.5)
8 | par(mfrow=c(1,3))
10 | hist(binom1, breaks=100, xlab="n=10 p=0.1")
11 | hist(binom2, breaks=100, xlab="n=10 p=0.5")
13 | hist(binom3, breaks=100, xlab="n=20 p=0.5")
14
```

